
Designing representations for groupware
by examining discourse

Alexander Feinman and Richard Alterman
Brandeis University Computer Science Dept., MS018

415 South Street, Waltham, MA 02454 USA
Email: afeinman@cs.brandeis.edu

Fax: 1-781-736-2741

Author Keywords
Analysis, computer-mediated communication, discourse anal-
ysis, ethnography, groupware, reference.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces.Computer-supported
cooperative work, evaluation/methodology.

ABSTRACT
Groupware requires careful design work to construct sys-
tems that help, rather than hinder, online coordination. Un-
derstanding the emergent work practice of participants in a
joint activity is crucial to designing effective software. We
have adapted ethnographic techniques to create two analysis
methods. These methods can be used by an analyst to sys-
tematically examine the emergent work practice of partici-
pants and recommend appropriate representations for shared
information.

One method tracks the references participants make in their
discourse to give insight into how participants exchange and
store information. This informs the design of appropriate
representations and procedures for storing and exchanging
information. In this paper, we show how this method pro-
vides a basis for designing mediating representations for a
groupware system and predicts their use and misuse. We
also show evidence that students were able to learn and ap-
ply these methods to analyze and redesign groupware sys-
tems they constructed.

INTRODUCTION
Computer-mediated collaboration has become ubiquitous.
Remotely-taught educational courses, collaboration with
work divisions in remote locations, and coordinating mili-
tary personnel distributed across a net-centric battlefield are
all domains where same-time / different-place [5] interac-
tions can become difficult. Participants in different loca-

tions have access to different physical environments; hence,
the methods they use for interacting are different than those
used in face-to-face interaction. Procedures for referring to,
pointing at, modifying, and reviewing objects, as well as
gauging the focus and intent of other participants must nec-
essarily be altered when participants interact online.

The goal of a groupware system is to support these altered
procedures and allow participants to get their root task done
efficiently. However, despite the best efforts of designers,
groupware applications often end up interfering with or fun-
damentally altering the very work they are designed to sup-
port [7, 19]. It is crucial, but difficult, to provide a system
which match the needs of the participants. As participants
perform a joint activity, a work practice emerges which can
be hard to foresee. Ideally, software would be built to match
this emergent practice [12,20,26].

One way to understand the emergent work practice is to
take the same ethnographic techniques used to examine sit-
uated activity of participants in face-to-face activity and
adapt them to online collaboration. We have adapted con-
cepts from both conversation and discourse analysis to create
methods that investigate the interaction at a conversational
level. These methods organize ethnographic observations
and generate concrete conclusions about the emergent work
practice of participants: what sorts of information are ex-
changed, what areas of the interaction are problematic, and
where the system needs to be modified to reduce coordina-
tion effort.

This paper will start with a brief introduction to one of our
analytic methods in the context of an experimental domain.
After this, we present an experiment which uses our methods
to redesign a groupware system, and show that it can be used
to predict how different representation designs will affect the
work practice. We then present evidence that these methods
can be taught and applied by comparing the results of three
years of student projects in an HCI class.

BACKGROUND
Our methods grew out of the application of techniques from
discourse analysis to the distributed cognition paradigm.
Distributed cognition investigates interaction by examining
the representations, both internal and external, available to
participants [12–14, 21]. By enumerating these representa-
tions and determining the procedures used to store, update,

and retrieve the information they contain, as well as tran-
scribe information between representations, an analyst can
gain a good understanding of the interactional work partic-
ipants are performing. By identifying this work, an analyst
can see how participants use the tools in their environment
to complete tasks and to interact with others, and can gain
an understanding of what sorts of tools should be provided
to improve performance.

However, distributed cognition does not specify a principled
way to draw quantitative conclusions about observations. To
address this shortcoming, we have adapted techniques from
conversation and discourse analysis. Conversation analy-
sis [22–24] and related techniques have been used to exam-
ine the minutiae of interaction at the conversation level. It
identifies the specific devices, such as conversational open-
ings or adjacency pairs, that participants use to organize their
talk. Characteristics such as turn-taking, speaker choice and
speech act type have been used to identify breakdowns in co-
ordination by highlighting departures from a standard model
of interaction [8]. Examination of the duration and type of
conversational utterances has also been used as a way of de-
termining the impact of alternate representations on conver-
sation [15].

The methods we have devised use features of the online
discourse generated by participants to reveal the represen-
tation work that they perform. Our approach yielded two
methods. The first of these isrecurrence analysis; build-
ing on previous work [18, 26], it looks at recurring conver-
sation about coordination, recurring errors in coordination,
and secondary structure in the discourse. The other method
referential structure analysis, is concerned with determining
what types of information participants discuss, and how they
communicate, refer to, and store task information. This pa-
per focuses on the latter of these methods, and on how to use
it to convert observations into design recommendations.

METHODS
To illustrate the methods we present an example taken from
one of our experimental domains: the Group Homework
Tool [16]. This project studied the educational impact of
having students program in pairs versus solo programming.
Two students are situated at two remote computers, and
asked to complete a coding assignment together using a chat
tool, a shared editor, and a pair of shared web browsers. Be-
fore and after the assignment, the students are individually
tested on their programming skills; the results are then com-
pared to examine knowledge transfer during pairs program-
ming.

A screenshot of the Group Homework Tool is shown in Fig-
ure 1. In the center is a shared editor; above it is a chat
window. On either side are shared browsers to view the
instructions and the reference manual for the programming
language. All communication and actions are recorded for
later analysis. The assignment in this case was to draw a
cartoon face, with various specified features such as a nose,
mouth, and so forth. A sample result is shown on the right
side of Figure 1. Figure 2 shows a portion of the chat tran-

Figure 1. Interface for the Group Homework Tool exper-
iment; to the right, the face produced by the code.

Discourse mouth plan

7 B: yep yep. moutha firstb sice a, c b
it’sc first on the list?

8 A: oka a
9 B: oka. looks like it’sb just 2 arc’s b a

(from the picture on the left)

10 B: although I’m not sure what the
parameters for .drawArc are.....

11 A: how will we be abe to see a
if itsa correct

12 B: well, [it] a doesn’t have to be a, b
100% correct i’m guessing..[it]b

just has to look similar

13 A: ok

14 B: so we just use the eval. button a
and pray ita looks ok :)

Figure 2. Analyzing GHT data with referential structure
analysis.

script from near the beginning of the session that generated
the face. Note that all dialogue is copied exactly as it was
typed, with elisions, misspellings, and the like retained in-
tact; necessary interpolations of the dialogue are indicated
with square brackets.

In this example, a pair of students have completed their pre-
test and are beginning their problem-solving session. The
two students, who have not met before, are of disparate skill
levels, and as a result user B ends up tutoring user A for
most of the session. At the start of this excerpt, user B has
copied and pasted some sample code from the instructions
into the shared editor. The two users begin by discussing
what part of the multi-part assignment to do first, and then
move on to discuss implementation details. The students are
provided with some sample code, which they use as a start-
ing point. The conversation quickly turns to a discussion of
how to address the first portion of the assignment – using the
drawArc function to draw a cartoon mouth, and using the
‘eval’ button to evaluate the code to fine-tune the appearance
of the mouth.

Analyzing the dialogue with referential structure analysis
Referential structure analysis grew out of an expansion of
techniques for extracting discourse structure [17] by incor-
porating concepts from literature on coherence and reference
resolution [9–11], as well as literature on the formulation of
and grounding of references [2, 3]. The method involves

tagging references in the discourse and combining them
into coreference chains. By assigning types to the refer-
ents pointed at by these references, and computing statistics
about these referents, we make visible the ways participants
handle different types of information. Although grounding
anaphoric references and forming reference chains can be
problematic in the general case [27], we have achieved good
results by restricting the set of referents under consideration
and aiming for investigative rather than comprehensive re-
sults.

The aim of the method is to discover what sorts of things
participants in a joint activity spend their time talking about,
how much they talk about them, and for how long. For ex-
ample, an analyst might investigate how frequently partici-
pants refer to some domain object, or how long they spend
discussing a plan for action. To do this, the analyst tags the
references made by participants and consolidates them ac-
cording to the referent they refer to, classifies the resultant
referents into types, and computes various parameters about
each referent identified in this fashion.

In Figure 2, we show the results of tracking two referents
through sample dialogue from the GHT domain. There are
many possibilities for reference: code constructs, elements
of the instructions, plans for action, the shape of the de-
sired output, division of labor, and so forth. For clarity, we
have pulled out only two referents from the dialogue, and
marked each reference with a unique subscript; references
are sorted into separate columns depending on which refer-
ent they point at. We note the type and every reference to
each referent. From this we can compute two fundamental
measures: lifetime of relevance, defined as the duration (in
utterances) between the first and last mention of the referent,
inclusive; and the number of references to that referent over
its entire lifetime. These measures reveal certain important
aspects of how participants make use of that particular type
of information.

The first referent examined is the “mouth” referent, referring
to a portion of the face which the code is meant to produce.
References to it are collected in the second column from the
right. On line 7, B refers to it by name (“mouth”), followed
by an anaphoric reference (“it’s”). On line 9, B refers to the
mouth — in this case, the picture of the mouth provided in
the instructions. Discussion on lines 11 and 12 refers to the
mouth a number of times, including by means of elided pro-
nouns; and at the end of the dialog on line 14, B refers to the
mouth once more. From this, we can see that the mouth ref-
erent remains relevant for some time — in this segment, the
first reference to it is on line 7, and the final reference is on
line 14. (Conversation about it continues past this brief seg-
ment of dialogue, but we are restricting analysis to this seg-
ment for didactic purposes.) For this segment of discourse,
it has a lifetime of relevance to the participant of seven ut-
terances (inclusive), and is referred to seven times in five
separate utterances during that lifetime.

Participants also discuss a plan for drawing the mouth at the
start of the extract. This “plan” referent is referred to dif-

ferently than the “mouth” referent. References to this plan
referent are noted in the right-most column of Figure 2. On
line 7, B proposes the plan (“mouth first [. . .] ?”); on line 8,
A accepts (“ok”), and on line 9, B acknowledges acceptance
(“ok”). This constitutes the entire conversation about this
plan. In contrast to the mouth referent, the plan for ordering
tasks is relevant for three utterances (lines 7–9), but after this
is never discussed again. Although the plans continues to be
a topic for discussion — lines 10–14 are primarily concerned
with how to carry out the plan — the participants have com-
mitted to it and do not refer to the plan itself again. This par-
ticular plan referent has a short lifetime of relevance (three
utterances), and is mentioned three times over that span.

This contrast in referential structure — a long lifetime ver-
sus a short one, and a period of frequent reference versus a
lower-density but more continuous pattern of reference — is
the sort of observation the method is designed to find. By
examining these patterns of reference to referents, we can
gauge how participants are exchanging information, and de-
termine how best to mediate that exchange.

USING THE METHODS TO INFORM REDESIGN
Our experimental methodology for investigating a domain
begins with examining existing work practice. For a real-
world task, this would be performed by gathering ethno-
graphic information through observation of workers at work.
However, these techniques can be somewhat limited; it is
difficult to record a complete picture of the interaction.
Even high-fidelity techniques such as video recording may
lose a fair amount of interaction detail due to limitations
of the recording and playback technology. However, with
computer-mediated, different-place coordination, it is possi-
ble to use the computer itself to record the interaction. Be-
cause all interaction is mediated by the computer, construct-
ing systems that record and play back what users do makes
the entire interaction available for analysis. To investigate a
domain, we construct a basic system for an initial study, have
users perform their tasks on it, and analyze the recorded in-
teraction. From this, we design and construct an improved
system, and construct representations that are suitable for
supporting the observed work practice.

The business travel domain
We devised a two-stage experiment to test the utility of meth-
ods for suggesting new representations and predicting the
impact they will have on the emergent work practice. Specif-
ically, we wanted to show that, using referential structure
analysis, an analyst could predict which representations for
information would be adopted successfully by users, and
which would not be.

In keeping with our experimental methodology, we con-
ducted a small study to gather initial data, and used this data
to design a pair of domain-specific groupware systems. The
first system, the “matching” system, was designed with a
set of representations that matched the emergent work prac-
tice of the pilot study users, and were predicted to support
the ways in which they shared information. In contrast, the
“non-matching” system was designed with representations

Adam’s Mark Hotel $129 x 2 = $260 + tax
(google: hotels dallas)
Food:
Tues Lunch: near convention center ($30 each, $60 total)
Tues Dinner: bobssteakandchop.com (expected $160 total)
Tues Entertainment: random show 2tix x $45 = $90
Weds Breakfast: at hotel ($30 each, $60 total)
Weds Lunch: at Park: barbeque, $40
Sandy Lake Park – minigolf, $2 entry, $2/game: $12
- - - - - -
$682

Figure 3. Itinerary produced by a test subject in the Busi-
ness Travel study.

which were very similar to those in the Matching system but
did not match the work practice of users. Preliminary re-
sults from this experiment, discussed below, show that the
methods used were successfully able to predict representa-
tion use, and give specific explanations of why users did and
did not use the representations given.

The domain of business travel was chosen for its general
familiarity among users. Specifics of the task were deter-
mined by conducting a brief ethnographic study of the meth-
ods used by real-world users to plan business trips. Subjects
were given instructions such as the following:

You and your partner have 30 minutes to plan a business trip
to the Dallas/Fort Worth area. You are scheduled to arrive
at DFW Airport at 7:44 am on Tuesday, Sept 20th, and de-
part from there on Wednesday night at 4:17 pm. A rental
car is waiting for you. You must spend 9 to 5 on Tuesday
at the Dallas Convention Center. Stay within a$500 total
budget. You should produce a detailed itinerary with times
and budget to present to your support staff. Your tasks:

1. Find a hotel.
2. Find places to eat meals.
3. Find entertainment for Tuesday evening.
4. Find a place to play golf on Wednesday.

A small study was conducted (n=4) to gather the required
data to design the systems. Pairs of subjects were asked to
create an itinerary, including budgeting, for a two or three
day business trip over the course of a 30-minute problem
solving session. Subjects were given a private text editor,
a chat client, and a web browser, and trained in the domain
before being asked to plan a trip. Dyads generally nominated
one member to construct the requested itinerary in the text
editor; a sample appears in Figure 3.

Analyzing the base group data
Subjects reported some frustration with the task – organizing
information was difficult, as was maintaining awareness of
the actions of the other user. Despite an attempt to enforce
the 30 minute deadline, no groups were able to complete
the problem in under 45 minutes, with 50 minutes being the
average time required.

Type Freq Refs % of Refs Lifetime Density

Instance 31% 4.7 38% 12% 66%
Task 17% 4.7 21% 43% 24%
Plan 17% 1.9 8% 3% 80%
URL 11% 1.2 4% 1% 90%
Repair 8% 3.4 7% 2% 98%

Table 1. Referential structure data from the Business
Travel domain.

Chat data from the base group was tagged using referential
structure analysis. As a part of this process, we identified a
number of new referent types: tasks, instances of tasks, and
URLs. Some of the more generic types found in previous
analyses (plans, repairs) also appeared in this data set. The
most frequently-occuring referent types found as a result of
this analysis are shown in Table 1.

Tasks are the generic tasks that users discussed. Finding a
hotel, looking for entertainment, and calculating the budget
were all considered tasks.Instancesare specific places or
events which the users find to fulfill a particular task; for ex-
ample, the “Adams Mark Hotel”, a hotel found by multiple
groups, was an instance which satisfies the task of finding a
hotel. URLs are just that – references to specific web pages
made by users. While there were other referent types found,
these three new types, together with domain-independent
referent typesplans and repairs, accounted for a vast ma-
jority of all referents found (85%), and so we focused our
attention on them.

For each type of referent we calculated a variety of measures
(see Table 1): thefrequencyof the type (number of referents
of that type, divided by the total number of referents); the
average number ofreferencesto each referent of that type;
thepercent of all referenceswhich were to referents of this
type; the averagelifetime of referentsof this type (number
of lines of chat between first and last reference to a refer-
ent, divided by the total length of the session it appeared in);
andaverage density(what percent of lines over a referent’s
lifetime contain a reference to it).

We also calculated the concurrence of each referent type,
shown in Table 2. This is the average expected number of
referents of that type that are relevant at any one time. This
was computed by noting how many referents of a type are
relevant during each line of dialog (i.e., have both a reference
before or on, and on or after, that line). As an average did not
seem to adequately express the characteristics, we computed
a number of additional statistics: the mode of the number of
concurrent referents, and the maximum number of referents
that were relevant at once, for each type.

Drawing conclusions
We shall discuss the utility of these measures as they apply to
each type of information. By examining the statistics shown
above we were able to come up with a desired set of features
for representations crafted to match the pattern of interaction
surrounding observed referent types. Representations were

Type Mode Max Average

Instance 1–3 3–6 2.34
Task 3–6 4–6 3.24
Plan 0 1–2 0.19
URL 0 0–2 0.55
Repair 0 1 0.07

Table 2. Number of concurrent referents for each type.

therefore designed with features that matched the observed
properties of information use, summarized in Table 3.

Taskshave the longest lifetime, at about 43% of a problem
session. For such a long-lived referent type, they have a sur-
prisingly high average density (24%); hence, it is unsurpris-
ing that their average concurrence is also high (3.24). This
means that in general users are working on three or four tasks
at any one time, with some spikes to six. This long period of
relevance, coupled with the number of simultaneously rel-
evant referents, clearly indicates the need for a persistent,
shared representation which allows users to enter at least six
and preferably closer to ten items.

Closer examination of how users talked about task referents
revealed properties of tasks. Users initially spent some time
discussing assignment of the tasks (e.g., “You find a hotel
— I’ll work on food.”). However, after this brief discussion,
references to tasks only occurred in the context of instances:
nominating instances for a task (“How about the Marriott?”),
or querying or reporting on the status of the task (“Do we
have a hotel room yet?”). In other words, generic tasks had
only a short lifetime outside their attachment to instances.
This negotiation over division of labor can therefore be han-
dled in chat, and the remaining activity about tasks can be
combined into the representation for instances, which we
will discuss next.

Instanceswere the most talked-about referent — accounting
for over one third of references — and of reasonably long
lifetime. Groups generally had between one and three in-
stances relevant at any one time; one group had six relevant
for a fairly substantial period. However, the long tail at be-
ginning and end of sessions, where most instances were not
relevant, reduced the average number of relevant instances to
just over two. From this, we determined that a representation
meant to store instances should allow at least six items, and
probably more, to be stored at once, even though in general
only a third of the representation will be in active use.

Users gave short-hand names to instances, and struggled
with conversationally pointing at instances, especially when
multiple tasks were relevant; hence, the representation should
provide a naming field, to allow canonical references to
items. Likewise, users spent a certain amount of time dis-
cussing the cost of an instance, and more time calculating
the total expenditure (as required by the task specification).
A representation for these therefore should include a way
for users to input cost information in a structured fashion, so
that the system can automatically calculate totals; this will

Type Observed properties Representation features

Task Long-lived Persistent, Nameable
Frequent references Dedicated screen area
Coupled with Instances Merge into Instance rep

Instance Medium-length Persistent, Nameable
Frequent references Dedicated screen area
Moderate concurrence Show multiple items
“Budget” property Structured storage for this

Plans Short-lived Ephemeral representation
Almost no concurrence No need for multiple items
Few mentions No need for naming

URLs Short-lived Ephemeral representation
Very few references Ephemeral representation
Coupled with Instances Treat as Instance property

Repairs Short-lived Ephemeral representation
Very high density Store in negotiable medium

Table 3. Mapping referent type properties to desired fea-
tures of new representations.

reduce cognitive workload, reduce conversation, and reduce
incidence of error by offloading budget computations.

Plansoccurred fairly frequently. However, as had been seen
in previous domains, they had a very short lifetime (averag-
ing 3% of a log file, or 3.6 lines of chat). Reference patterns
were split; about half the time, a plan was proposed or re-
ported once and never mentioned again. The other half of the
time the plan was referred to a handful of times, indicating
some negotiation. Only in a few cases did a plan continue
to be relevant for more than five lines of chat. Plans almost
never overlapped – in one case, a group discussed one plan
while hashing out another, but otherwise only one plan at
most was relevant at a time. Coupled with a high density
— 80% — these statistics led to the conclusion that there
was no need for a persistent, shared representation for plans:
chat, with its ability to be used as both a tool for announce-
ment and for negotiation of plans, was the best medium.

URLs were used by some groups to refer to web pages.
These generally had one reference, though a few had two
or three. These were always exchanged in the context of
an instance; either a detail page for a previously-discussed
instance, or as a way to begin negotiation over a newly dis-
covered instance. As a result, these referents can be folded
into the representation for instances, as an extra property.
For the purposes of this experiment we decided not to im-
plement this, instead focusing on providing representations
for plans versus tasks.

Repairs were short-lived, and completely dominated con-
versation when they occurred. This is in keeping with find-
ings for other domains. As in these other domains, we deter-
mined that chat is probably the best representation for these,
as it allows pure, focused negotiation and repair of common
ground.

Designing matching representations

Figure 4. The Task Table, a representation designed to
match observed work practice.

The goal of the base group experiment was to provide data to
design two systems: one with representations that matched
the emergent work practice, and one that conflicted with it.
Examination of the data indicated that was crucial to pro-
vide an effective representation for instances and tasks, as
together they accounted for well over half of all references.
Based on the features predicted by the properties of the data
— as mapped out in Table 3 — we designed a persistent grid
representation for listing tasks and instances. This matched
well with the secondary structure users created in their pri-
vate text editors; all users listed itinerary data in a format
similar to that seen in Figure 3. This led us to create a new
representation for storing tasks and instances: the Task Ta-
ble, shown in Figure 4.

The table consists of three free-form text columns. The
“Task” column stores Task referents; the “Details” column
gives users a place to put Instance information. The “Price”
column is separated out to encourage users to enter informa-
tion in a structured fashion, in this case, prices in dollars and
cents. By using this structure, the system is able to provide
intelligent support: prices are automatically summed up, the
total is shown at the top of the window and compared to the
total budget for the trip, with the text turning red if the bud-
get is currently exceeded.

Designing non-matching representations
In contrast, the goal of designing the mismatched system
was to predict representations that do not match how the
analysis predicts information will be used. To this end we
chose to encode plans in a persistent representation similar
to the one devised for Tasks and Instances: the Plan Table
is shown in Figure 5. As noted in the above analysis, plan
referents tend to have a very short lifetime, with few refer-
ences. This predicts that the work that participants expend to
transcribe plans into the Plan Table would be wasted work;
they should not need to store this information in a persistent
fashion.

The first two columns give users space to note the person re-
sponsible for the plan, and a name for the plan. To avoid hav-
ing users store instance details in this representation, space
in the Task column was restricted. Users were instructed
to put ”Future”, ”Active”, or ”Done” in the third column,
Status. As with budgeting in the Task Table, this structure

Figure 5. The Plan Table, a representation designed to
conflict with observed work practice.

allows the system to provide some intelligent support: the
system automatically tracks the number of incomplete tasks,
the tally is displayed at the top of the window, and is high-
lighted in red if there are still tasks pending. While this fea-
ture is of some limited utility, asking users to make use of the
Status column in this way had the side effect of increasing
the number of times users had to access a putative plan. To
fully utilize the feature, users would have to ‘refer’ to a plan
(by updating the row in the shared table) at least three times,
well above the observed average number of references for
plan referents.

As an aside, the plan table does provide storage for implicit
references to tasks, as it allows entry of plans to perform
tasks. It is a fairly good representation for task information;
however, as we shall see, this did not provide enough support
to overcome the mismatch between users’ work practice and
how the representation worked, and instead was subverted
by users to store instance information attached to the tasks.

Predictions
Our prediction was that users would be happier and more
efficient when using the matching system. Since the design
data showed that users needed to talk about tasks and in-
stances, the natural representation provided by the Task Ta-
ble would be used as designed, and would help users com-
plete their task faster and more easily. Users might also fold
a representation for URLs into the Task Table, given that
some groups used them to talk about instances.

Conversely, we expected users to resist using the Plan Ta-
ble. The data indicated that planning was really best matched
with the chat window. If users used the Plan Table at all, our
predictions were that they would fail to update the Status
field, or perhaps subvert the representation to store the data
they needed to store persistently: instance information. As
we shall see below, these predictions were validated by our
data.

Experimental results
To test our systems we organized a small-scale experiment
(n=4). A larger-scale trial is underway currently to improve
the strength of results. Dyads were trained in the domain,
and then given four problems to solve; two with the ‘match-
ing’ system, and two with the ‘non-matching’ system. Half
the dyads were exposed to the ‘matching’ system first; the

Measure Observed change

Problems finished on time ‘Non-matching’ groups finished
33% fewer problems (p < 0.1)

Lines of chat ‘Non-matching’ groups
generated 35% more chat

Table 4. Objective results comparing ‘non-matching’
system to ‘matching’ system.

Question Matching Non-matching

Reaction to system 4.9 2.9
(1=hated it, 7=loved it) p < 0.01

Ease of Use 5.6 3.1
(1=difficult, 7=easy) p < 0.01

Group coordination 5.5 5.0
(1=poor, 7=excellent) not significant

Group performance 5.0 4.9
(1=poor, 7=excellent) not significant

Table 5. Survey results from the initial BT study.

other half used the ‘non-matching’ system first, to counter-
balance ordering effects.

We used a number of objective measures, coupled with user
opinion, to evaluate the new design. These are shown in Ta-
ble 4 and Table 5. The first objective measure was the length
of time it took users to complete a problem. Allowing users
to perform their tasks faster, all other things being equal,
is a good sign of an improved system design. We found
that subjects were able to finish problems on time more of-
ten when using the ‘matching’ system than when using the
‘non-matching’ system (86% complete vs. 57% complete
— a 33% difference in completed problem rate). This was a
good indication that the ‘matching’ system allowed users to
perform their task more efficiently.

Another measure is lines of chat. Past work has shown that
coordination work can be reduced by providing structured
representations that match the way users communicate, tran-
scribe, and store information. One clear indicator that this is
occurring is a reduction in the overall amount of information
sent via unstructured representations such as chat. Hence, by
comparing thechat outputof the initial system, where users
are forced to coordinate strictly using chat, to the chat output
in the new systems, where users have access to alternate rep-
resentations, gives the experimenter a way to calculate how
much information is being communicated via these alternate
representations, a sign of their level of utility to users.

Our data showed that users chatted about 35% more when
using the “non-matching” systems, a statistically significant
increase. This was a good indication that coordination work
that had moved to the Task Table in the ‘matching’ system
was still being done in the chat in the ‘non-matching’ sys-
tem. As noted previously, this allows an analyst a rough
measure of the quantity of coordination work that has been
shifted to the new representation.

User feedback and opinion were also used to gauge accept-
ability of the design. Designs which match the emergent
work practice should be adopted with less resistance by
users: they do not conflict with users’ expectations about
how to perform their tasks, and they allow users to coordi-
nate more effectively. The four measures presented in Table
4 were gathered via an exit survey, which also provided some
free-form opportunities for feedback. As can be seen, users
clearly indicated a preference for the ‘matching’ system, rat-
ing it a 4.9 vs. 2.9 (on a scale of 1 to 7). Likewise, they found
it significantly easier to use — 5.6 vs. 3.1. Notable, however,
was the lack of difference between feelings of group coordi-
nation and performance; despite objective measures to the
contrary, groups generally felt their performance with both
systems was above average.

Verifying predictions
The data matched our predictions fairly well. Users pre-
ferred the ‘matching’ system, were more efficient using it,
and needed to resort to chat less. On the other side, users
mostly disliked and complained the Plan Table, although one
group found it somewhat useful and praised it in the exit sur-
vey. Users generally agreed that there was a greater need
to communicate the information stored in the Task Table:
“Task was much easier because it provided its own concrete
space to enter the completed plans themselves, rather than
just whether or not the plan was done.” Another user wrote,
“The ‘plan’ system was confusing and frustrating because
there was a way to record process but no way to record out-
put.” One summed it up this way: “TASK is much easier[...]
All planning really happens over chat.”

The matching representations were primarily used the way
they were designed to be used, with some exceptions. For
example, users shoehorned URL referents into the represen-
tation for instances, and then complained about the lack of
proper support for URLs. As expected, the users chafed
when using the non-matching representations, and in some
cases forced them to fit their own needs. While this was
not unexpected, the lengths that users would go to in or-
der to store needed information were surprising. One group
started the experiments using the ‘non-matching’ system and
promptly began storing instance information in the “Plan”
column of the Plan Table. This was despite training, and the
use of design techniques to discourage this behavior (column
width was harshly restricted to encourage storage of short
information). Likewise, one group started storing URLs in
the “Who” column. These users clearly saw a need to be
communicating instance information, and created their own
structure within the tools given to achieve their goals.

This data showed that we were able to use ethnographic ob-
servations of pilot study data in our design of two groupware
systems, and predict the resulting usage of these systems ac-
cording to principled analysis of those observations. Exper-
imental subjects used the representations in the fashion that
we predicted, including the re-tasking of representations to
store critical task information in fashions that conflicted with
their basic design. This showed the higher priority for the
user of completing the task as opposed to making use of the

system in its designed fashion, and highlighted a recurring
design difficulty in groupware systems — mismatch of rep-
resentation feature to task-driven information requirements
— that these methods can help alleviate.

GENERAL APPLICABILITY OF THE METHOD
To establish the general utility of our methods, we performed
experiments to demonstrate these three important qualities
of the methods:

1. The methods can be taught to other analysts.
2. Students can apply these methods to redesign

groupware.
3. Different analysts draw similar conclusions from

the same data.

Teaching the methods
In the Fall of 2003, we performed an experiment involv-
ing teaching our analysis methods to a class composed of
twenty-one Master’s students and upper-level undergradu-
ates. For the class project, the students worked into groups
of two to four; each group created problems for pairs of sub-
jects to solve cooperatively using the GrewpTool, a group-
ware framework similar to GHT. Students were asked to sub-
mit an initial design based on a survey of their available user
population; topics ranged from “plan a 5-night vacation to
Boston” to “the wedding dinner planner” to “create a web
page describing the culture of a nation.” After constructing
a prototype of the system, students recruited three or four
pairs of subjects, trained them in use of the system, and gen-
erated about 10 total hours of usage data. From this set of
data the students were asked to select a single transcript and
apply the methods presented in this paper to analyze the in-
teraction.

Applying the methods
Students were given three weeks to generate and submit de-
signs for new representations to improve user performance
in their particular domain, with the requirement that these
new designs be properly motivated using the analysis tech-
niques discussed in class. Most groups were able to suc-
cessfully apply our methods to suggest interesting redesign
possibilities for their systems. Student groups that submitted
redesigns were able to successfully motivate that redesign
using one or both of the analytic methods taught in class.

Recurrence analysis
The first method we taught to the Fall 2003 class,recurrence
analysis, is covered in more detail elsewhere [1, 6]; we will
summarize it here. Recurrence analysis is a lens that can be
applied during observation of a domain. It builds on pre-
vious work which examines ethnographic data for recurring
indications of difficulty [26]. Identification of problem areas
using these indicators allows an analyst to focus redesign ef-
forts. The analyst notes interactions of three particular kinds
as indications of problems in coordination:

• Recurrent communication about coordination: Sit-
uations where participants must repeatedly discuss

their coordination to perform a joint activity. An
indication that current procedures and tools for co-
ordination may be insufficient.

• Recurrent errors of coordination: Situations where
participants repeatedly commit errors. This is a
good indication that the process is too difficult to
perform correctly with the tools available.

• Creation of secondary structure: Conversational or
procedural mechanisms devised and employed by
the participants to help them coordinate their ac-
tions. It is a clear indication that the existing struc-
ture is insufficient.

All ten student groups in the class were able to identify re-
curring communication about coordination in the data, and
used it to justify redesign. The recurring situations identi-
fied centered around the heart of the interaction in each case.
For example, in a group that created a “wedding planner”
system, the students noted users spent a great deal of time
discussing seating arrangements. This focused their later
referential structure analysis, and led them to create repre-
sentations for arranging seating.

Almost all groups used the appearance of recurring errors
as design justifications. For example, the subjects in one
group were asked to plan a road trip from Boston to Los
Angeles. They often made errors related to problems with
attention; that is, one user would enter something into the
shared text area, but the other user would fail to notice, and
instead duplicate the efforts of the first user. As a result the
designers proposed a representation that would allow users
to keep track of what task each user was working on.

The appearance of secondary structure, the final indicator
used in recurrence analysis, was less frequently utilized by
the students — only two groups justified their redesign based
on the appearance of such structure. The structure found
by the students is nevertheless compelling. For example, in
the “Boston trip” group, one of the subjects ended up filling
the shared text editor pane with a highly-formatted itinerary.
The subjects felt the need to create a shared representation
to organize their activity; however, the tools at their disposal
were minimal — only a shared text editor — and so they
were unable to generate a truly effective representation. The
redesign for this domain addressed this and other problems
by including a tabular shared itinerary representation similar
to the design of the Task Table.

Using referential structure analysis for redesign
About half of the student groups were able to further refine
these design ideas with referential structure analysis. These
groups used the regimen of identifying new referent types as
a way to discover the information that participants discussed
most frequently in their domain. They produced designs that
incorporated shared, structured external representations for
these kinds of information. These new referent types and
new representations are summarized in Table 6.

These groups were able to focus their attention on the more
important referent types, and so were able to design systems

Project domain New types New representations

Class web page webpage Browser history

Boston Trip event To-do list
location Itinerary
price Budget calculator

Themed web page requirement Requirement list
topic Topic list

Wedding dinner constraint Seating Chart
food Menu Planner
guest Guest List

Trip planner event Timeline
time

Table 6. Some new, student-designed representations
based on observed referent types.

that more closely matched the access patterns of the infor-
mation they encoded. For example, the “wedding dinner”
group examined closely the conversations their users were
having while planning the (theoretical) dinner. They found
exchanges about seating to be a frequent occurrence, with
many referents of type “guest” all connected together in a
discussion about who to seat where at a particular table. As
a result of this they designed a tailored Seating Chart repre-
sentation, which vastly simplifies negotiation about seating
by providing a persistent, shared representation for table and
guest referents.

The redesigns were much better than those produced by ear-
lier classes. The success stories from the Fall 2003 HCI class
stand in contrast to results from prior sessions of the same
class. In both the Spring of 1999 and the Fall of 2000, we
taught a similar class and asked students to complete a very
similar assignment; students were asked to design and im-
plement a basic groupware system, demonstrate it to users,
and redesign it based on user feedback. Although students
were exposed to a variety of design techniques, including a
thorough treatment of distributed cognition, and coverage of
Shneiderman’s prescriptions for software design [25], one of
the things they struggled with was how to convert these gen-
eral observations into specific design changes. In contrast,
the methods presented in this paper aided students in inves-
tigating and redesigning their domains because of the struc-
ture they provided. By telling these novice analysts what to
look at and what to look for, and then what to do with it, the
methods helped guide analysts through the design process.

Reproducing results
To test their ability to reproducibly apply the methods, the
students of the Fall 2003 class were asked to perform a refer-
ential structure analysis of four standard transcripts of GHT
data. Parts of the GHT study had been discussed in class
on several occasions, so although they had not seen the spe-
cific data they were given, the students were familiar with
the domain. After the analyses were performed, we engaged
the class in a discussion of the results and methods from
this analysis, which yielded strong positive feedback about
the utility of the method. In addition to providing students
with unambiguous feedback about their ability to perform

the analysis correctly, this exercise allowed us to test the
inter-coder reliability of the methods.

Each transcript was analyzed by five pairs of students. The
resulting analyses were qualitatively similar, though there
were minor variations in results from group to group. To
quantify the agreement, we used Cohen’s Kappa, a standard
method for comparing two or more analyses of a single set of
data [4]. While it is meant to be applied to a situation where
independent analysts are sorting items into one of a number
of categories, with some adaptation we were able to apply it
to our data, even though the task was not a strict category-
assignment task. Kappa values for each group ranged from
48% to 71% — fair to moderate agreement — with an over-
all average of 62%, moderate agreement. This is a good
result for informal data of this nature, and indicates that the
methods can be used to achieve reproducible results.

CONCLUSIONS
In this paper we have presented a method for extracting ob-
servations from ethnographic study of a work domain and
using them to help design a new system of representations
to support that work. This approach examines the references
made by participants to reveal the way different types infor-
mation is passed around and stored in representations. By
matching the ways that users handle different types of infor-
mation, an analyst can recommend specific representations
to mediate that information, based on the observed proper-
ties of the information and the features of the representation.
We have shown that this approach can be used to design
effective groupware for a system. Experiments have also
demonstrated that the insights these methods generate into
the justifications for use of representations are strong enough
to be used both to help design groupware which supports
collaboration, and to predict mismatches between represen-
tation design and task requirements.

We have also shown that the methods are teachable and
reproducible: students were able to successfully apply the
methods in the course of analyzing their own domains. The
methodology provided the students with a step-by-step pro-
cedure to use to refine their applications, giving them guid-
ance as to what portions of the interaction to address. When
applied to standard transcripts, students were able to come
up with comparable results. Finally, the students demon-
strated that the methods can be applied to and generate re-
design recommendations for a wide variety of domains.

ACKNOWLEDGMENTS
Support.This research was supported by the Office of Naval
Research under grants No. N00014-96-1-0440 and N66001-
00-1-8965. Additional support came from NSF grant EIA-
0082393.

Thanks goes to Josh Introne, Seth Landsman, and others for
comments and continued collaboration in support of this pa-
per. Special thanks also goes to the Fall 2003 class of CoSci
111a, and all our experimental subjects, for providing data
and extensive feedback on these methods.

REFERENCES
1. Alterman, R., Feinman, A., Introne, J., and Landsman,

S. Coordinating representations in computer-mediated
joint activities. InProceedings of the 23rd Annual
Conference of the Cognitive Science Society(Hillsdale
NJ, 2001), Lawrence Erlbaum Associates.

2. Clark, H.Using Language. Cambridge University
Press, New York, 1996.

3. Clark, H., and Brennan, S. Grounding in
communication. InPerspectives on Socially Shared
Cognition, J. Levine, L. Resnik, and S. Teasley, Eds.
American Psychological Association, New York, 1991,
pp. 127–149.

4. Cohen, J. A coefficient of agreement for nominal
scales.Educational and Psychological Measurement
(1960), 37–46.

5. Ellis, C., Gibbs, S., and Rein, G. Groupware: Some
issues and experiences.Communications of the ACM
34 (1991), 38–58.

6. Feinman, A., and Alterman, R. Discourse analysis
techniques for modeling group interaction. In
Proceedings of the Ninth International Conference on
User Modeling(New York, 2003), Springer-Verlag,
pp. 228–237.

7. Foster, G., and Stefik, M. Cognoter: Theory and
practice of a collaborative tool. InProceedings of the
1986 ACM Conference on Computer-Supported
Cooperative Work(Austin TX, 1986), ACM Press,
pp. 7–15.

8. Goodman, B., Linton, F., Gaimari, R., Hitzeman, J.,
Ross, H., and Zarrella, G. Using dialogue features to
predict trouble during collaborative learning.User
Modeling and User-Adapted Interaction 15, 1 (March
2005), 85–134.

9. Grosz, B., Joshi, A., and Weinstein, S. Centering: A
framework for modeling the local coherence of
discourse.Computational Linguistics 2, 21 (1995),
203–225.

10. Grosz, B., and Sidner, C. Attention, intentions, and the
structure of discourse.Computational Linguistics 12, 3
(1986).

11. Hirst, G.Anaphora in Natural Language
Understanding. Springer-Verlag, 1981.

12. Hollan, J., Hutchins, E., and Kirsh, D. Distributed
cognition: Toward a new foundation for
human-computer interaction research.ACM
Transactions on Computer-Human Interaction 7, 2
(2000), 174–193.

13. Hutchins, E.Cognition in the Wild. MIT Press,
Cambridge, 1995.

14. Hutchins, E. How a cockpit remembers its speeds.
Cognitive Science 19(1995), 265–288.

15. Kraut, R., Fussell, S., and Siegel, J. Visual information
as a conversational resource in collaborative physical
tasks.Human-Computer Interaction 18(2003), 13.49.

16. Langton, J., Hickey, T., and Alterman, R. Integrating
tools and resources: a case study in building
educational groupware for collaborative programming.
The Journal of Computing Sciences in Colleges 19, 5
(2004), 140–153.

17. Lockman, A., and Klappholz, A. Toward a procedural
model of contextual reference solution.Discourse
Processes 3(1978), 25–71.

18. Martin, D., and Sommerville, I. Patterns of cooperative
interaction: Linking ethnomethodology and design.
ACM Transactions on Computer-Human Interaction
11, 2 (2004), 59–89.

19. Olson, J., Olson, G., Storrosten, M., and Carter, M.
How a group-editor changes the character of a design
meeting as well as its outcome. InProceedings of ACM
CSCW’92(1992), pp. 91–98.

20. Rogers, Y. Coordinating computer-mediated work.
Computer Supported Cooperative Work (CSCW) 1
(1993), 295–315.

21. Rogers, Y., and Ellis, J. Distributed cognition: an
alternative framework for analysing and explaining
collaborative working.Journal of Information
Technology 9, 2 (1994), 119–128.

22. Sacks, H.Lectures on Conversation. Basil Blackwell,
Oxford, 1992.

23. Sacks, H., Schegloff, E., and Jefferson, G. A simplest
systematics for the organization of turn-taking for
conversation.Language 50(1974), 696–735.

24. Schegloff, E. Conversation analysis and socially shared
cognition. InPerspectives on Socially Shared
Cognition, J. Levine, L. Resnick, and S. Teasley, Eds.
American Psychological Association, New York, 1991,
pp. 150–171.

25. Shneiderman, B.Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
3rd ed. Addison-Wesley Publishing, Reading MA,
1998.

26. Suchman, L., and Trigg, R. Understanding practice:
Video as a medium for reflection and design. InDesign
at Work, J. Greenbaum and M. Kyng, Eds. Erlbaum,
Hillsdale NJ, 1991, pp. 65–90.

27. van Deemter, K., and Kibble, R. What is coreference
and what should coreference annotation be? In
Proceedings of the ACL’99 Workshop on Coreference
and its Applications(1999), pp. 90–96.

