CS155b – Computer Graphics

Instructor: Giovanni Motta (gim@ieee.org) Volen, Room #255. Phone: x62718

Class:

Mon. and Wed. from 5 to 6:30pm Abelson #131

Teaching Assistants:

Anthony Bucci (abucci@cs) John Langton (psyc@cs) Anurag Maskey (anurag@cs)

Books

Textbook:

Computer Graphics: Principles and Practice in C, by J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes. Addison-Wesley, 2nd ed..

OpenGL:

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2, by M. Woo, J. Neider, T. Davis, D. Shreiner, OpenGL Architecture Review Board. Addison-Wesley, 3rd ed..

Suggested:

Mathematics for 3D Game Programming & Computer Graphics, by Eric Lengyel. Charles River Media.

Additional References

Web Page: http://www.cs.brandeis.edu/~cs155

Lectures: Published on the web page in Adobe pdf format.

Demo, Sample Programs, Useful Links: Web page.

Essential Math Reference Book: Essential Mathematics for Computer Graphics, fast, by John Vince. Springer.

Homework

Programming: With OpenGL library called from C/C++.

Theory: Will cover the topics discussed in class.

In general, two weeks due date. Solution will be given in class on due date. No late homework accepted.

Exams: Midterm and Final. In class, closed book.

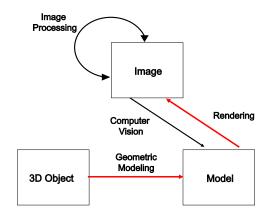
Goals

Learning the principles of Computer Graphics

Understanding graphical models, fundamental techniques, algorithms and implementation issues

Practicing some applied mathematics

Getting acquainted with a Graphical Library (OpenGL)


Syllabus

Introduction
Overview, Applications, Examples.
2D Drawing
Scan Conversion of Lines and Circles, Polygon Clipping, Polygon Filling
2D Viewing and Geometrical Transformations
Rotation, Reflection, Shear, Scale and Translation. World to Viewport Coordinate Transformation.
3D Solid Modeling
3D Models and Representations, Curves and Surfaces.
3D Viewing and Geometrical Transformations
Geometrical Transformations, Projections and Viewing in 3D, Visible Surface Algorithms.
Color
Color Spaces, Metrics, Transformations.
Illumination and Shading
Light Models, Shading Models, Transparency, Shadows.
Free Form Modeling
Interpolation and Approximation, Curve and Surface Splines.
Advanced Topics
Ray Tracing, Texture Mapping, Animation, Morphing, Physics Based Models.

Applications

- •CAD Computer Aided Design (Mechanical, Architectural)
- •Simulators (Flight, Driving, Sports)
- Advertising
- Virtual Reality
- Architectural Visualization
- Art and Entertainment
- Games
- Special effects
- Education
- Scientific visualization

The Visual Sciences

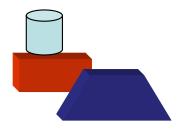
The Visual Sciences

Image Processing:

From Images to Images Computer Vision:

From Images to Models

Computer Graphics:

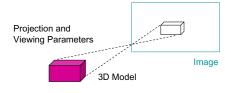

From Objects to Models (Geometric Modeling). From 2D/3D Models to Images (Rendering). From 4D Models to Images (Animation).

Geometric Modeling

•From a concept (or a real object) to a geometric representation on a computer

•Example: a sphere can be described as (x,y,z,r)

•Complex objects can be constructed from simpler ones



Rendering

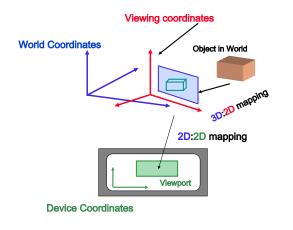
•Given a scene and viewing parameters, produce an image •Images are a 2D array of pixels

•Important sub problems:

- -Which pixels are covered by each object ? (Scan Conversion)
- -What is visible at each pixel ? (Visible Surface Algorithm)
- -What color should a pixel be ? (Illumination, Shading Algorithms).

Animation

•Definition of complex time-dependent behavior of objects


Issues with rigid and elastic joints

•Realistic rendering of collective behaviors

•Examples:

- -Automatic interpolation between key-frames
- -Physics based simulation

Viewing Transformation Pipeline

Viewing Factors

Objects:

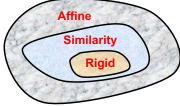
 -Geometrical Properties of an Object (Solid Modeling)
 -Physical Properties of Object's Surfaces (Illumination Models, Color Models)
 <u>Camera:</u>
 -Projections
 Light Source:

- -Color Theory •Spatial set-up:
 - -3D Transformations, Coordinate Systems

Rendered Image

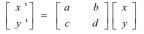
2D Drawing

Goal: Getting Acquainted with Images

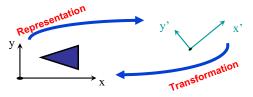

Displays (Raster vs. Vector)
Basic Definitions: Pixel, Resolution, Dynamic Range...
Line Drawing (Incremental and Mid-Point Algorithms)
Techniques for Drawing Circles
Filling Polygons

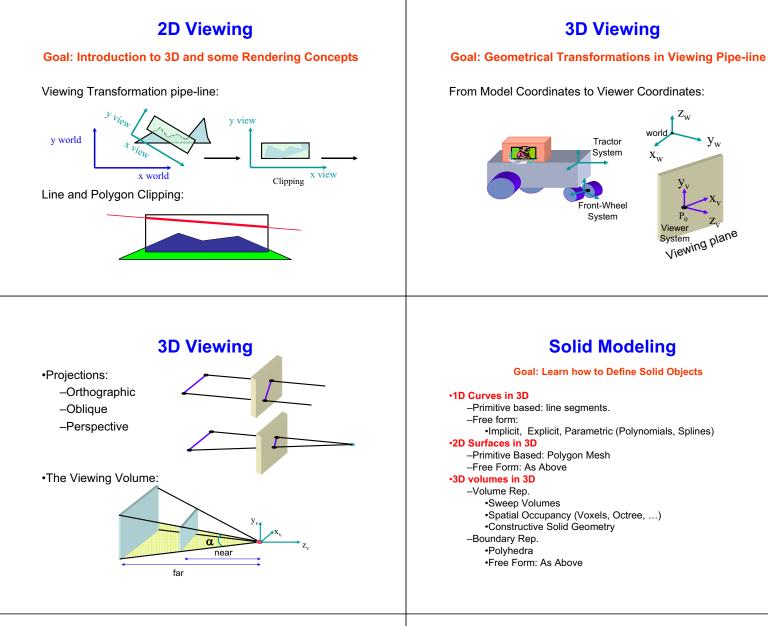
2D Transformations

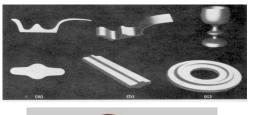
Goal: Introduction to 3D, Review Linear Algebra

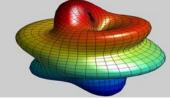

•Basic 2D Transformations: Translation, Scaling, Rotation, Shear.

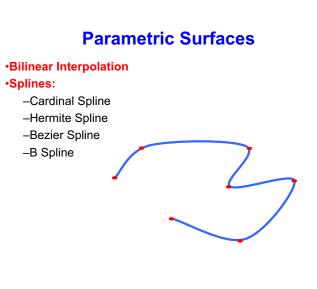
•Composition of Transformations and Transformation Groups:


2D Transformations

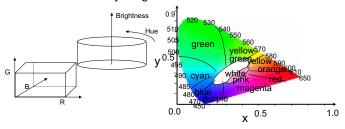

•Transformations in Matrix notation:


•Composition of transformations in matrix notation •The homogeneous coordinates in 2D:

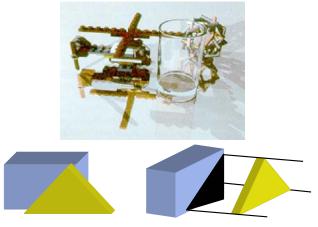

 $(\ x \ , \ y \) \ \rightarrow \ (\ X \ , \ Y \ , \ W \) \ = \ (\ t \ x \ , \ t \ y \ , \ t \)$ •Change of coordinates:



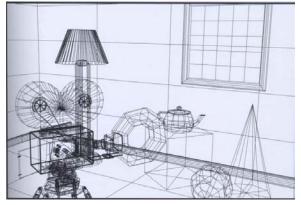
Solid Modeling



Color Theory

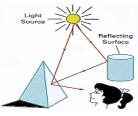

Goal: Understanding what a color is

The Trichromatic Color Theory

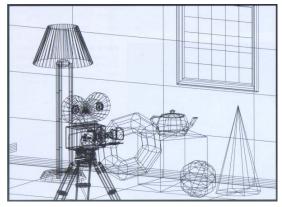

- •Linear Color Space and Color Representations: RGB, CMY,HSB
- •Perceptual Color Spaces: LAB, YIQ
- •The CIE Chromaticity Diagram

Illumination Models and Shading

Example: Creating an Image from a Model

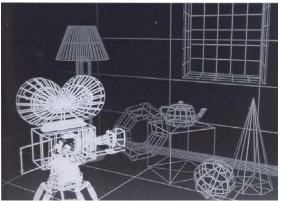

Polygonal Model Generated from Spline Patches. Perspective Projection

Illumination Models and Shading

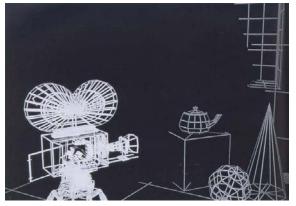

Goal: Understanding the physical properties of an object

Light Source Parameters (Shape, Position, Color, Intensity)
Surface Parameters: Ambient, Diffuse, Specular
Polygon Rendering Methods
Transparency

•Shadow



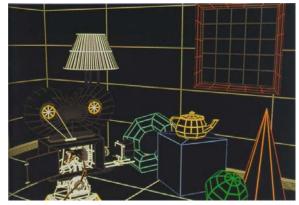
Example: Creating an Image from a Model


Polygonal Model Generated from Spline Patches. Orthographic Projection

Example: Creating an Image from a Model

Depth Cueing

Example: Creating an Image from a Model


Depth Clipping

Example: Creating an Image from a Model

Colored Vectors

Example: Creating an Image from a Model

Visible Line Determination

Example: Creating an Image from a Model

Visible Surface Determination with Ambient Illumination

Example: Creating an Image from a Model

Individually Shaded Polygon with Diffuse Reflection

Example: Creating an Image from a Model

Gouraud Shaded Polygon with Diffuse Reflection

Example: Creating an Image from a Model

Gouraud Shaded Polygon with Specular Reflection

Example: Creating an Image from a Model

Phong Shaded Polygon with Specular Reflection

Example: Creating an Image from a Model

Curved Surfaces with Specular Reflection

Example: Creating an Image from a Model

Multiple Lights

Example: Creating an Image from a Model

Texture Mapping

Example: Creating an Image from a Model

Shadows

Example: Creating an Image from a Model

Reflection Mapping

Example: Polynomial Texture Maps

Example: Polynomial Texture Maps

From: http://www.hpl.hp.com/research/ptm/

