Time and Tense in Language

James Pustejovsky Brandeis University

FALL, 2005

Tense

• Grammatical expression of the time of the situation described, relative to some other time (e.g., moment of speech)

George admires Adolf. George admired Jesus.

Events and Relations

Event expressions;

tensed verbs; has left, was captured, will resign; stative adjectives; sunken, stalled, on board; event nominals; merger, Military Operation, Gulf War;

Dependencies between events and times:

Anchoring; John left on Monday.

Orderings; The party happened after midnight.

Embedding; John said Mary left.

Reichenbach

- Tensed utterances introduce references to 3 'time points'
 - Speech Time: S
 - Event Time: E
 - Reference Time: R

 $_{S}I$ had [mailed the letter] $_{E}$ [when John came & told me the news] $_{R}$

E < R < S

- The concept of 'time point' is an abstraction it can map to an interval
- Three temporal relations are defined on these time points
- at, before, after
- 13 different relations are possible

Tense as Anaphor: Reichenbach

- Tensed utterances introduce references to 3 'time points'
 - Speech Time: S
 - Event Time: E
 - Reference Time: R

 $_{S}I$ had [mailed the letter] $_{E}$ [when John came & told me the news] $_{R}$

E < R < S

- The concept of 'time point' is an abstraction it can map to an interval
- Three temporal relations are defined on these time points
 at, before, after
- 13 different relations are possible

Tense as Operator: Prior

Relation	Reichenbach's	PRIOR	English Tense	Example
	Tense Name		Name	
E <r<s< td=""><td>Anterior past</td><td>PP?</td><td>Past perfect</td><td>I had slept</td></r<s<>	Anterior past	PP?	Past perfect	I had slept
$E=R \le S$	Simple past	P?	Simple past	I slept
R <e<s R<s=e R<s<e< td=""><td>Posterior past</td><td>PF?</td><td></td><td>I would sleep</td></s<e<></s=e </e<s 	Posterior past	PF?		I would sleep
E < S = R	Anterior present	P?	Present perfect	I have slept
S=R=E	Simple present	?	Simple present	I sleep
S= R <e< td=""><td>Posterior present</td><td>F?</td><td>Simple future</td><td>I will sleep Je vais dormir</td></e<>	Posterior present	F?	Simple future	I will sleep Je vais dormir
S <e<r S=E<r E<s<r< td=""><td>Anterior future</td><td>FP?</td><td>Future perfect</td><td>I will have slept</td></s<r<></r </e<r 	Anterior future	FP?	Future perfect	I will have slept
S <r=e< td=""><td>Simple future</td><td>F?</td><td>Simple future</td><td>I will sleep Je dormirai</td></r=e<>	Simple future	F?	Simple future	I will sleep Je dormirai
S <r<e< td=""><td>Posterior future</td><td>FF?</td><td></td><td>I shall be going to sleep</td></r<e<>	Posterior future	FF?		I shall be going to sleep

- Free iteration captures many more tenses,
 - I would have slept PFPφ
- But also expresses many non-NL tenses
 - PPPPφ [It was the case]⁴ John had slept

Reichenbachian Tense Analysis

Relation	Reichenbach's Tense Name	English Tense Name	Example
E <r<s E=R<s< td=""><td>Anterior past Simple past</td><td>Past perfect Simple past</td><td>I had slept I slept</td></s<></r<s 	Anterior past Simple past	Past perfect Simple past	I had slept I slept
R <e<s R<s=e R<s<e< td=""><td>Posterior past</td><td>Simple past</td><td>I would sleep</td></s<e<></s=e </e<s 	Posterior past	Simple past	I would sleep
E <s= r<br="">S= R= E S= R<e< td=""><td>Anterior present Simple present Posterior present</td><td>Present perfect Simple present Simple future</td><td>I have slept I sleep I will sleep Je vais dormir</td></e<></s=>	Anterior present Simple present Posterior present	Present perfect Simple present Simple future	I have slept I sleep I will sleep Je vais dormir
S <e<r S=E<r E<s<r< td=""><td>Anterior future</td><td>Future perfect</td><td>I will have slept</td></s<r<></r </e<r 	Anterior future	Future perfect	I will have slept
S <r=e S<r<e< td=""><td>Simple future Posterior future</td><td>Simple future</td><td>I will sleep Je dormirai I shall be going to sleep</td></r<e<></r=e 	Simple future Posterior future	Simple future	I will sleep Je dormirai I shall be going to sleep

- <u>Tense</u> is determined by relation between R and S
- R=S, R<S, R>S
- Aspect is determined by relation between E and R
- E=R, E < R, E> R
- Relation of E relative to S not crucial
 - Represent R<S=E as E>R<S
- Only 7 out of 13 relations are realized in English
- 6 different forms, simple future being ambiguous
- Progressive no different from simple tenses
 - But I was eating a peach
 ≠> I ate a peach

Aspect

- Two Varieties
 - Grammatical Aspect
 - Distinguishes viewpoint on event
 - Lexical Aspect
 - Distinguishes types of events (situations)(eventualities)
 - Also called Aktionsarten

Grammatical Aspect

- Perfective focus on situation as a whole
 - John built a house

- Imperfective focus on <u>internal phases</u> of situation
 - John was building a house

Different types of tense systems across languages

- Using verbal inflection:
 - Languages with a two-way contrast:
 - <u>English</u>: Past (before the moment of speaking) vs. Nonpast past -ed: She worked hard. nonpast (unmarked): We admire her. I will leave tomorrow.
 - <u>Dyirbal</u> (Australian language): Future vs. nonfuture: future nonfuture: bani-n 'will come' nofuture nu: bani-nu 'came, is coming'
 - Languages with a three-way distinction:
 - <u>Catalan, Lithuanian</u>: Past vs. Present vs. Future

 (Cat.) past: treball-à. (Lit.) Dirb-au. 'I worked'
 present: treball-a. Dirb-u. 'I work'
 tuture: treball-arà. Dirb-siu. 'I will

Aktionsarten

- STATIVES know, sit, be clever, be happy,
 - can refer to state itself (ingressive) John knows , or to entry into a state (inceptive) John realizes
 - *John is knowing Bill, *Know the answer, *What John did was know the answer
- ACTIVITIES walk, run, talk, march, paint
 - if it occurs in period t, a part of it (also an activity) must occur for every/most subperiods of t
 - X is Ving entails that X has Ved
 - John ran <u>for an hour</u>,*John ran <u>in an hour</u>

- ACCOMPLISHMENTS build, cook, destroy
 - culminate (telic)
 - x Vs for an hour does not entail x Vs for all times in that hour
 - X is Ving does not entail that X has Ved.
 - John booked a flight <u>in an hour</u>, John <u>stopped</u> building a house
- **ACHIEVEMENTS** notice, win, blink, find, reach
 - instantaneous accomplishments
 - *John dies <u>for an hour</u>, *John wins <u>for an</u> hour, *John stopped reaching New York

	Telic	Dynamic	Durative	E.g.
Stative	-	-	+	know,
				have
Activity	-	+	+	walk,
				paint
Accomplish	+	+	+	destroy,
ment				build
Achieveme	+	+	-	notice,
nt				win

Different types of tense systems across languages

- A much richer distinction:
 - ChiBemba (Bantu language):

For past:

 Remote past (before yesterday) 	Ba-àlí-bomb-ele	'they worked'
 Removed past (yesterday) 	Ba-àlíí-bomba	'they worked'
 Near past (earlier today) 	Ba-àcí-bomba	'they worked'
• Immediate past (just happened) Ba-á-bomb	a 'they
worked'		

For future:

 Immediate future (very soon) 	Ba-áláá-bomba	'they'll work'
 Near future (later today) 	Ba-léé-bomba	'they'll work'
 Removed future (tomorrow) 	Ba-kà-bomba	'they'll work'
Remote future (after tomorrow)Ba-ká-bomba	'thev'll work'

Aspect

- Internal temporal organization of the situation described by an event.
- Most common:
 - **Perfective:** Situation viewed as a bounded whole.
 - Imperfective: Looking inside the temporal boundaries of the situation.
 - Habitual
 - Progressive
- Other related aspectual distinctions:
 - **Iterative:** The action is repeated.
 - Inceptive: The action is began.
 - Inchoative: Entering into a state.

Different types of aspect systems across languages

• Other languages use a derivational component:

Russian: by means of a system of verbal prefixes

- **Imperfective:** simple verbs Ja *citál 'I was reading'

- **Perfective:** prefixed verbs Ja pro citál 'I (did) read'

Finnish: by means of the case of the object

- **Perfective:** Hän luki kirjan_(acc.) 'He read the book'

- Imperfective: Hän luki kirjaa (part.) 'He was reading the book'.

Basic meaning: only part of the object being referred to is affected by the situation.

Different types of aspect systems across languages

• Some languages use auxiliaries and particles associated with the verb:

English:

Perfective: have + Past Participle
 Progressive: be + Present Participle
 Habitual: use to + Base form
 I used to sing.

Catalan:

- **Habitual:** *soler* + Infinitive

Solia cantar. 'She generally talks.' Solia cantar. 'She used to talk'

- **Iterative:** $anar_{(past)}$ ('to go')+ Present Part

Va tornant 'She keeps coming back' go_{past} coming_back

Tense and Aspect

- Aspect and Tense generally cross-classify:
 - Russian:
 - Present:

- Only imperfective: *`citáju* '*I read'*

• Past:

Imperfective: Ja *citál 'I was reading'
Perfective: Ja pro *citál 'I (did) read'

• Future:

- Imperfective: ??

Perfective: Ja pro citáju 'I shall read'

Tense and Aspect

- Basque:

- Present
 - Imperfect (Gerund + Present tense auxiliary) ekartzen du 'he is bringing it'
 - Perfect (Past Participle + Present tense aux.) ekarri du 'he has brought it'
- Past:
 - Imperfect (Gerund + Past tense aux.) ekartzen zuen 'he brought, used to bring'
 - Perfect (Past Participle + Past tense aux.) ekarri zuen 'he brought, had brought'
- Future:
 - Simple (Future Participle + Pres. tense aux.)
 ekarriko du 'he will bring it'
 - Past Future (Future Participle + Past tense aux.) ekarriko zuen 'he would bring'

Embedded tenses in English

Three interpretations of embedded tenses:

Absolute : embedded	tense is	independ	ent of
main clause to	ence		

Yesterday John saw a girl who was running this morning.

See running

This morning John saw a girl who was running yesterday.

Anaphoric: embedded tense is anaphoric on

the main clause tense
Yesterday John saw a girl who was running.

Relative: embedded tense is interpreted with

respect to the main clause tense
Tomorrow John will see a girl who was running earlier.

running see

An interesting case

• Tense and Aspect in 2 different creoles, evolved independently from each other:

everved maepende	<i>J</i>	o trici.
	Hawaiian Creole	Haitian Creole
Base Form	He walk	Li maché
(he walks, he walked)		
Progressive	He stay walk	L'ap maché
he is walking, he was	J	(Li ap maché)
Perfective	He bin walk	Li té maché
he has walked, he had		
Parkedive Progressive (he has/had been walking)	He bin stay walk	Li t'ap maché (Li té ap maché)
(he has/had been walking)		(Li té ap maché)
Irreal	He go walk	L'av maché
(he would walk, he will		
Wreal Progressive	He go stay walk	L'av ap maché
(he would/will be walking)	0 0	(Li av áp maché)
Irreal Perfective	He bin go walk	Li t'av maché
(he would/will have		(Li té av maché)
Wreatperfective	He bin go stay walk	Li t'av ap maché
Progressive	0 0	(Li té av maché)

Constraints on interpretation

 Tense interpretation displays both structural restrictions and lexical preferences

Relative clause interpretation:

At the party John danced with the woman (previously/later) he ate dinner with.

At the party John met the woman he married

Complement clause interpretation

At the party John said that he (previously/??later) ate dinner with a certain woman.

Crosslinguistic variation

Variation in relative clause interpretation

• Japanese

Mariko-wa naiteiru otokonoko-ni hanasikaketa Mariko-TOP cry-teiru-PRES boy-to talk-PAST "Mariko talked to the boy who is/was crying"

Russian

Ma`sa videla `celoveka, kotoryj placet. Masha see-PAST-IMP man who cry-PRES "Masha saw a/the man who is crying"

Embedded tenses cross-linguistically

	Relative	Complement
	Clause	Clause
English	absolute relative anaphoric	relative anaphoric
Japanese	absolute relative	relative
Russian	absolute anaphoric	relative

Via cross-linguistic investigation a picture of embedded tenses emerges:

- Absolute tense is limited to relative clauses
- Relative tense is predominant in complement clauses

Crosslinguistic variation

Variation in complement clauses interpretation

Japanese

Bernhard-wa Junko-ga byookida to it-ta B.-TOP J.-NOM sick-PRES comp say-PAST "Bernhard said that Junko was sick"

Russian

Ma`sa skazala, cto Vova spit. Masha say-PAST-PERF that Voval sleep-PRES "Masha said that Vova was sleeping"

The Conceptual and Linguistic Basis

- TimeML presupposes the following temporal entities and relations.
- Events are taken to be situations that occur or happen, punctual
 or lasting for a period of time. They are generally expressed by
 means of tensed or untensed verbs, nominalisations, adjectives,
 predicative clauses, or prepositional phrases.
- Times may be either points, intervals, or durations. They may be referred to by fully specified or underspecified temporal expressions, or intensionally specified expressions.
- Relations can hold between events and events and times. They
 can be temporal, subordinate, or aspectual relations.

Allen (1984) Temporal Logic

- Time primitives are temporal intervals.
- No branching into the future or the past
- 13 basic (binary) interval relations
 - •[b,a,eq,o,oi,s,si,f,fi,d,di,m,mi], (six are inverses of the other six)
- Supported by a transitivity table that defines the conjunction of any two relations.
- All 13 relations can be expressed using *meet*:
 - Before $(X, Y) \Rightarrow \exists Z$, $(meets(X, Z) \land (meets(Z, Y)))$

Allen's Temporal Ontology

- Properties hold over every subinterval of an interval
 - --> Holds(p, T) e.g., "John was sick for a day."
- Events hold only over an interval and not over any subinterval of it.
 - —> Occurs(e, T) e.g., "Mary wrote a letter this afternoon."
- Processes hold over some subintervals of the interval they occur in.
 Occuring(p, T) e.g., "Mary is writing a letter today."

Allen's 13 Temporal Relations

<u> </u>	
	A is EQUAL to B
<u> </u>	B is EQUAL to A
A	A is BEFORE B
'	B is AFTER A
	A MEETS B
В	B is MET by A
	A OVERLAPS B
B	B is OVERLAPPED by A
⊢ A- I	A STARTS B
	B is STARTED by A
 A 	A FINISHES B
⊢ B −	B is FINISHED by A
-	A DURING B
В	B CONTAINS A

Situation Type: Formal Constraints

- Homogeneity
 - All subevents of P are also of P (downward entailment)
 - though only down to a minimal size
 - The sum of all subevents of P are also of P (upward entailment)
- Subinterval Property
 - Activity: x Ps for t => x P's for all subintervals of t. excluding those below a minimal size and excluding certain gaps
 - For is downward entailing, but the maximal interval is more felicitous
 - Accomplishment: x Ps in t => there is a subinterval t' of t in which Become(x, P) is true
 - $\bullet \ \ In$ is upward entailing, but the minimal interval is more felicitous
 - In-adverbials apply to quantized event predicates
 - A predicate is quantized iff whenever it applies to e it doesn't apply to subparts of e

Event Structure

- Quantification over events as individuals: I.e., events as first-order objects.
- Finer-grain representation than Prior's tense logic.
- Allows representation of word-based causality.
- Simplifies reasoning with identity and overlap relations.

McCarthy and Hayes (1969) The Situation Calculus

- Represents actions and their effects on the world
- The world is represented as a set of states.
- Fluents are time-varying properties of individuals.
- Actions are functions that map states to states.
- Used for multiple tasks, especially planning
- Major problems:
 - Concurrent actions cannot be represented
 - No duration of actions or delayed effects

Theories of Event Structure

Davidson (1967): Proposes individuation over events.

Kamp (1968): Formal Model for tensed events, extending Prior's Tense Logic to predicates.

Moens and Steedman (1988): Finite-state model of event phases.

Pustejovsky (1991): Phrase structure model for subevent semantics for word meaning.

Hayes 1985

Histories in Naïve Physics

- A history is an entity that incorporates time and space
- An **object** *O* in a **situation** *s* is the intersection of the situation with the object's history
- Permanent locations are bound spatially, but are restricted temporally
- Situations are unbound spatially, but are limited temporally by surrounding events
- Most objects are between these two extremes
- Events are instantaneous
- Episodes have a duration
- The history of an object is described over time

Kowalski & Sergot (1986) Event Calculus

- · Developed for updating databases and for narrative understanding
- · Based on the notion of an event and its descriptions (relationships)
- · Relationships are ultimately over time points
 - after(e) = the period of time started by event e
- Udates can only add; deletions add new information about the end of the period of time over which the old relationship holds
- Uses nonmonotonic, default reasoning since relations change as new information arrives (a new event can signal the end of an old one)
- Allows partial description of events, using semantic cases
- · Defined and interpreted as Horn clauses in Prolog

Properties of Events

Events have parts:

```
The rock broke the window.
```

```
∃e1∃e2[action(e1,rock,window) &
    broken(e2,window) & e1<e2]</pre>
```

Actions have consequences:

```
Mary arrived in Boston.
```

```
He13e2[action(e1, mary, boston) &
    in(e2, mary, boston) &
    e1 < e2]</pre>
```