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Abstract—In this paper, we argue that database systems be augmented with an automated data exploration service that methodically

steers users through the data in a meaningful way. Such an automated system is crucial for deriving insights from complex datasets

found in many big data applications such as scientific and healthcare applications as well as for reducing the human effort of data

exploration. Towards this end, we present AIDE, an Automatic Interactive Data Exploration framework that assists users in discovering

new interesting data patterns and eliminate expensive ad-hoc exploratory queries. AIDE relies on a seamless integration of

classification algorithms and data management optimization techniques that collectively strive to accurately learn the user interests

based on his relevance feedback on strategically collected samples. We present a number of exploration techniques as well as

optimizations that minimize the number of samples presented to the user while offering interactive performance. AIDE can deliver

highly accurate query predictions for very common conjunctive queries with small user effort while, given a reasonable number of

samples, it can predict with high accuracy complex disjunctive queries. It provides interactive performance as it limits the user wait time

per iteration of exploration to less than a few seconds.

Index Terms—Data exploration, data sampling

Ç

1 INTRODUCTION

TRADITIONAL data management systems assume that
when users pose a query they a) have good knowledge of

the schema,meaning and contents of the database and b) they
are certain that this particular query is the one theywanted to
pose. In short, traditional DBMSs are designed for applica-
tions in which the users know what they are looking for.
However, as data are being collected and stored at an unprec-
edented rate, we are building more dynamic data-driven
applicationswhere this assumption is not always true.

Interactive data exploration (IDE) is one such example. In
these applications, users are trying to make sense of the
underlying data space by experimenting with queries, back-
tracking on the basis of query results and rewriting their
queries aiming to discover interesting data objects. IDE
often incorporates “human-in-the-loop” and it is fundamen-
tally a long-running, multi-step process with the user’s
interests specified in imprecise terms.

One application of IDE can be found in the domain of evi-
dence-based medicine (EBM). Such applications often
involve the generation of systematic reviews, a comprehen-
sive assessment of the totality of evidence that addresses a
well-defined question, such as the effect on mortality of giv-
ing versus not giving drug A within three hours of a symp-
tom B. While a content expert can judge whether a given
clinical trial is of interest or not (e.g., by reviewing parameter
values such as disease, patient age, etc.), he often does not
have a priori knowledge of the exact attributes that should

be used to formulate a query to collect all relevant clinical tri-
als. Therefore the user relies on an ad hoc process that
includes three steps: 1) processing numerous selection
queries with iteratively varying selection predicates,
2) reviewing returned objects (i.e., trials) and classifying
them to relevant and irrelevant, and 3) adjusting accordingly
the selection query for the next iteration. The goal here is to
discover the selection predicates that balances the trade-off
between collecting all relevant objects and reducing the
size of returned results. These “manual” explorations are
typically labor-intensive: they may take days to weeks to
complete since users need to examine thousands of objects.

Scientific applications, such as ones analysing astrophys-
ical surveys (e.g., [1], [2]), also suffer from similar situations.
Consider an astronomer looking for interesting patterns
over a scientific database: they do not know what they are
looking for, they only wish to find interesting patterns; they
will know that something is interesting only after they find
it. In this setting, there are no clear indications about how
the astronomers should formulate their queries. Instead,
they may want to navigate through a subspace of the data
set (e.g., a region of the sky) to find objects of interest, or
may want to see a few samples, provide yes/no feedback,
and expect the system to find more similar objects.

To address the needs of IDE applications, we propose an
Automatic Interactive Data Exploration (AIDE) framework that
automatically discovers data relevant to her interest. Our
approach unifies the three IDE steps—query formulation,
query processing and result reviewing—into a single auto-
matic process, significantly reducing the user’s exploration
effort and the overall exploration time. In particular, an AIDE
user engages in a “conversation” with the system indicating
her interests, while in the background the system builds a
usermodel that predicts datamatching these interests.

AIDE offers an iterative exploration model: in each itera-
tion the user is prompted to provide her feedback on a set of
sample objects as relevant or irrelevant to her exploration
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task. Based on her feedback, AIDE generates the user’s explo-
ration profile, i.e., a user model that classifies database objects
as relevant or irrelevant. AIDE leverages thismodel to explore
further the data space, identify strategic sampling areas and
collect new samples for the next iteration. These samples are
presented to the user and her new feedback is incorporated
into the user model. This iterative process aims to generate a
user model that identifies all relevant objects while eliminat-
ing themisclassification of irrelevant ones.

AIDE’s model raises new challenges. First, AIDE oper-
ates on the unlabeled space of the whole data space that the
user aims to explore. To offer effective exploration results
(i.e., accurately predict the user’s interests) it has to decide
and retrieve in an online fashion the example objects to be
extracted and labeled by the user. Second, to achieve desir-
able interactive experience for the user, AIDE needs not
only to provide accurate results, but also to minimize the
number of samples presented to the user (which determines
the amount of user effort) as well as to reduce the sampling
and space exploration overhead (which determines the
user’s wait time in each iteration).

These challenges cannot be addressed by existing
machine learning techniques. Classification algorithms (e.g.,
[3]) can build the user model and the information retrieval
community offers solutions on incrementally incorporat-
ing relevance feedback in these models (e.g., [4]). How-
ever, these approaches operate under the assumption
that the sample set shown to the user is either known a
priori or, in the case of online classification, it is pro-
vided incrementally by a different party. In other words,
classification algorithms do not deal with which data
samples to show to the user, which is one of the main
research challenges for AIDE.

Active learning systems [5] also extract unlabeled sam-
ples to be labeled by a user and the goal is to achieve high
accuracy using as few labeled samples as possible. In partic-
ular, pool-based sampling techniques selectively draw sam-
ples from a large pool of unlabeled data. However, these
solutions exhaustively examine all unlabeled objects in the
pool in order to identify the best samples to show to the
user based on some informativeness measure [6]. Therefore,
they implicitly assume negligible sample acquisition costs
and hence cannot offer interactive performance on big data
sets as expected by IDE applications. In either case, model
learning and sample acquisition are decoupled, with the
active learning algorithms not addressing the challenge of
how to minimize the cost of sample acquisition.

To address the above challenges, AIDE closely integrates
the active learning paradigm and sample acquisition
through a set of exploration heuristics. These heuristics
leverage the classification properties of decision tree learn-
ing to identify promising data exploration areas from which
new samples are extracted, as well as to minimize the num-
ber of samples shown to the user. Our techniques are
designed to predict linear patterns of user interests, i.e., we
assume relevant objects are clustered in multi-dimensional
hyper-rectangles. These interests can be expressed as range
queries with disjunctive and/or conjunctive predicates.

This paper extends our previous our previous work on
automatic data exploration [7], [8]. Specifically, we extended
AIDE with a number of performance optimizations that are

designed to reduce the total exploration overhead. Specifi-
cally, we introduce: (a) a skew-aware exploration technique
that deals with both uniform and skewed data spaces as
well as user interests that lie on either the sparse or dense
parts of the distribution, (b) a probabilistic sampling strat-
egy for selecting the most informative sample to present to
the user; the strategy is designed to reduce the user’s explo-
ration effort and (c) an extended relevance feedback model
that allows users to annotate “similar” (rather than only rel-
evant/irrelevant) samples, allowing us to further reduce the
total exploration time. We also include a new set of experi-
mental results that demonstrate the effectiveness and effi-
ciency of our new exploration techniques.

The specific contributions of this work are the following:

1) We introduce AIDE, a novel, automatic data explora-
tion framework, that navigates the user throughout
the data space he wishes to explore. AIDE relies on
the user’s feedback on example objects to generate a
user model that predicts data relevant to the user. It
employs a unique combination of machine learning,
data exploration, and sample acquisition techniques
to deliver highly accurate predictions of linear pat-
terns of user interests with interactive performance.
Our data exploration techniques leverage the proper-
ties of classificationmodels to identify single objects of
interest, expand them to more accurate areas of inter-
ests, and progressively refine the prediction of these
areas. Our techniques address the trade-off between
quality of results (i.e., accuracy) and efficiency (i.e.,
the total exploration timewhich includes the total sam-
ple reviewing time andwait time by the user).

2) We introduce newoptimizations that address the pres-
ence of skew in the underlying exploration space as
well as a novel probabilistic approach for identifying
the most informative sample set to show to the user.
We also include an extended feedbackmodel based on
which the user can also indicate similar but not neces-
sarily relevant objects. This newmodel allowsAIDE to
focus its exploration on on certain promising domain
ranges reducing significantly the user’s labeling effort.

3) We evaluatedAIDEusing the SDSS database [2] and a
user study. When compared with traditional active
learning and passive learning (i.e., random sampling),
AIDE and its novel optimizations are strictly more
effective and efficient. AIDE can predict common con-
junctive queries with a small number of samples,
while given an acceptable number of labeled samples
it predicts highly complex disjunctive queries with
high accuracy. It offers interactive performance as the
user wait time per iteration is less than a few seconds
in average. Our user study revealed that AIDE can
reduce the user’s labeling effort by up 87 percent,
with an average of 66 percent reduction. When
including the sample reviewing time, it reduced the
total exploration time by 47 percent in average.

The rest of the paper is organized as follows. Section 2
outlines the AIDE framework and Section 3 describes the
phases of our data exploration approach. Section 4 discusses
the new performance optimizations we introduce in AIDE.
Section 5 presents our experimental results. Section 6 dis-
cusses the related work and we conclude in Section 7.
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2 AIDE FRAMEWORK OVERVIEW

In this section we introduce our system model, the classifica-
tion algorithmsweuse andwedefine our exploration problem.

2.1 System Model

The workflow of our exploration framework is depicted in
Fig. 1. AIDE presents to the user sample database objects and
requests her feedback on their relevance to her exploration
task, i.e., characterize them as relevant or not. For example, in
the domain of evidence-based medicine, users are shown
sample clinical trials and they are asked to review their
abstract and their attributes (e.g., year, outcome, patience age,
medication dosage, etc) and label each sample trial as interest-
ing or not. AIDE allows also the user to annotate samples that
are similar (in some attribute) but not match exactly her inter-
est, by marking them as “similar” samples. Finally, the user
can modify her feedback on previously seen samples, how-
ever this could prolong the exploration process.

The iterative steering process starts when the user pro-
vides her feedback by labeling samples are relevant or not.
The relevant and irrelevant samples are used to train a
binary classification model that characterizes the user’s
interest, e.g., it predicts which clinical trials are relevant to
the user based on the feedback collected so far (Data Classifi-
cation)1. This model may use any subset of the object’s
attributes to characterize user interests. However, domain
experts could leverage their domain knowledge to restrict
the attribute set on which the exploration is performed. For
instance, one could request an exploration only on the
attributes dosage and age. In this case, relevant trials will be
characterized on a subset of these attributes (e.g., relevant
trials have dosage > 45 mg).

In each iteration, more samples (e.g., records of clinical tri-
als) are extracted and presented to the user for feedback.
AIDE leverages the current user model as well as the user’s
feedback so far to identify promising sampling areas (Space
Exploration) and retrieve the next sample set from the data-
base (Sample Extraction). New labeled objects are incorpo-
rated with the already labeled sample set and a new
classification model is built. The steering process is com-
pleted when the user terminates the process explicitly, e.g.,
when reaching a satisfactory set of relevant objects or when
she does not wish to label more samples. Optionally, AIDE
“translates” the classification model into a query expression
(Query Formulation). This query will retrieve objects charac-
terized as relevant by the usermodel (Data Extraction Query).

AIDE strives to converge to a model that captures the
user interest, i.e., eliminating irrelevant objects while identi-
fying a large fraction of relevant ones. Each round refines
the user model by exploring further the data space. The
user decides on the effort he is willing to invest (i.e., number
of samples he labels) while AIDE leverages his feedback to
strategically sample the exploration space, i.e., collect sam-
ples that improve the accuracy of the classification model.
The more effort invested in this iterative process, the more
effective the user model will be.

2.2 Data Classification and Query Formulation

AIDE relies on decision tree classifiers to identify linear pat-
terns of user interests, i.e., relevant objects clustered in
multi-dimensional hyper-rectangles. Decision tree learn-
ing [3] produces classification models that predict the class
of an unclassified object based on labeled training data. The
major advantage of decision trees is that they provide easy
to interpret models that clearly describe the features charac-
terizing each data class. Furthermore, they perform well
with large data and the decision conditions of the model
can be easily translated to simple boolean expressions. This
feature is important since it allows us to map decision trees
to queries that retrieve the relevant data objects.

Finally, decision trees can handle both numerical and cate-
gorical data. This allows AIDE to operate on both data types
assuming a distance function is provided to calculate the simi-
larity between two data objects. Measuring the similarity
between two objects is a requirement of the space exploration
step. AIDE treats the similarity computation as an orthogonal
step and can make use of any distance measure. For continu-
ous data sets (e.g., numerical), the euclidean distance can be
used. Computing similarity between categorical data is more
challenging because there is no specific ordering between cat-
egorical values. However, various similarity measures have
been proposed for categorical data, andAIDE can be extended
in a straightforwardway to incorporate them.

Query Formulation. Let us assume a decision tree classifier
that predicts relevant and irrelevant clinical trials objects
based on the attributesage anddosage (Fig. 2). This tree pro-
vides predicates that characterize the relevant class andpredi-
cates that describe the irrelevant class. In Fig. 2, the relevant
class is described by the predicates ðage � 20^ 10 < dosage �
15Þ and ð20 < age � 40 ^ 0 � dosage � 10Þ, while the irrele-
vant class is characterized by the predicates ðage � 20
^dosage � 10Þ and ð20 < age � 40 ^ dosage > 10Þ (here we
ignore the predicates that refer to values outside

Fig. 1. Automated interactive data exploration framework.

Fig. 2. An example decision tree.

1. “Similar” samples are not included in the training of the usermodel.
In Section 4.3we discuss in detail howwe leverage these samples.
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attribute domains, such as age > 40, age < 0, dosage < 0
and dosage > 15). Given the decision tree in Fig. 2 it is
straightforward to formulate the extraction query for the
relevant objects (select * from table where (age � 20 and dos-
age > 10 and dosage � 15) or (age > 20 and age � 40 and
dosage � 0 and dosage � 10)).

2.3 Problem Definition

Given a database schema D, let us assume the user has
decided to focus his exploration on d attributes, where these
d attributes may include both attributes relevant and those
irrelevant to the final query that represents the true user
interest. Each exploration task is then performed in a
d-dimensional space of T tuples where each tuple repre-
sents an object characterized by d attributes. For a given
user, our exploration space is divided to the relevant object
set Tr and irrelevant set Tnr. Since the user’s interests
are unknown to AIDE, the sets Tr and Tnr are also unknown
in advance.

AIDE aims to generate a model that predicts these two
sets, i.e., classifies a tuple in T as relevant or irrelevant. To
achieve that, it iteratively trains a decision tree classifier.
Specifically, in each iteration i, a sample tuple set Si � T is
shown to the user and his relevance feedback assigns these
samples to two data classes, the relevant object class
Dr � Tr, and the irrelevant one, Dnr � Tnr. Based on the
samples assigned to these classes up to the i-th iteration, a
new decision tree classifier Ci is generated. This classifier
corresponds to a predicate set Pr

i

S
Pnr
i , where the predi-

cates Pr
i characterize the relevant class and predicates Pnr

i

describe the irrelevant one.
We measure AIDE’s effectiveness (aka accuracy of a clas-

sification model) by evaluating the F -measure, the har-
monic mean between precision and recall.2 Our goal is to
maximize the F -measure of the final decision tree C on the

total data space T , defined as: F ðT Þ ¼ 2�precisionðT Þ�recallðT Þ
precisionðT ÞþrecallðT Þ .

The perfect precision value of 1.0 means that every object
characterized as relevant by the decision tree is indeed rele-
vant, while a good recall ensures that our final query can
retrieve a good percentage of the relevant to the user objects.

3 SPACE EXPLORATION TECHNIQUES

Our main research focus is on optimizing the effectiveness
of the exploration (i.e., the accuracy of the final user model)
while offering interactive experience to the user. To address
that AIDE strives to improve on a number of efficiency fac-
tors, including the number of samples presented to the user
and the number of sample extraction queries processed in
the backend. In this section, we introduce our main explora-
tion heuristics that tackle these goals.

AIDE assumes that user interests are captured by range
queries, i.e., relevant objects are clustered in one or more
areas in the data space. Therefore, our goal is to generate a
user model that predicts relevant areas. The user model can
then be translated to a range query that selects either a

single multi-dimensional relevant area (conjunctive query)
or multiple ones (disjunctive query).

AIDE incorporates three exploration phases. First, we
focus on collecting samples from yet unexplored areas and
identifying single relevant objects (Relevant Object Discovery).
Next, we strive to leverage single relevant objects to generate
a user model that identifies relevant areas (Misclassified
Exploitation). Finally, given a set of discovered relevant areas,
we gradually refine their boundaries (Boundary Exploitation).
In each iteration i, these three phases define the new sample
set we will present to the user. Specifically, if T i

d, T
i
m and T i

b

samples will be selected by the object discovery, the misclas-
sified and the boundary exploitation phase, then the user is
presentedwith Si ¼ T i

d þ T i
m þ T i

b samples.
Our three exploration phases are designed to collectively

increase the accuracy of the exploration results. Given a set
of relevant objects from the object discovery step, the mis-
classified exploitation increases the number of relevant
samples in our training set while reducing the misclassified
objects (specifically false negatives). Hence, this step
improves both the recall and the precision parameters of the
F -measure metric. The boundary exploitation further refines
the characterization of the already discovered relevant areas.
Therefore, it discovers more relevant objects and eliminates
misclassified ones, leading also to higher recall and preci-
sion. Finally, similarly to general active learning algorithms,
AIDE does not provide theoretical guarantees on the number
of required labeled samples since these depend on the distri-
bution of the data spaces and the hypothesis of the usermod-
els (linear separator, homogeneous separators, etc). Next, we
discuss in detail each phase. More details about these explo-
ration techniques can be found in [7].

3.1 Relevant Object Discovery

Our first exploration phase aims to discover relevant objects
by showing to the user samples from diverse data areas. To
maximize the coverage of the exploration space we follow a
well-structured approach that allows us to (1) ensure that
the exploration space is explored widely, (2) keep track of
the already explored sub-areas, and (3) explore different
data areas in different granularity.

Our approach operates on a set of hierarchical exploration
grids. Given an exploration task on d attributes, we define
the exploration space to be the d-dimensional data area
defined by the domain of these attributes. AIDE creates off-
line a set of grids and each grid divides the exploration
space into d-dimensional equi-width cells. We refer to each
grid as an exploration level and each level has a different
granularity, i.e., cells of different width. The lower the
exploration level the more fine-grained the grid cells (i.e.,
smaller cells) it includes and therefore moving between lev-
els allows us to “zoom in/out” into specific areas as needed.

Exploration Level Construction. To generate an exploration
level on a d-dimensional exploration space we divide each
normalized attribute domain3 into width ranges that cover d
percentage of the normalized domain, effectively creating

ð100=dÞd grid cells. The d parameter defines the granularity

2. Here, if tp are the true positives results of the classifier (i.e.,
correct classifications as relevant), fp are the false positives (i.e., irrele-
vant data classified as relevant) and fn are the false negatives (i.e., rel-
evant data classified as irrelevant), we define the precision of our
classifier as precision ¼ tp

tpþfp and the recall as recall ¼ tp
tpþfn.

3. We normalize each domain to be between [0,100]. This allow us to
reason about the distance between values uniformly across domains.
Operating on actual domains will not affect the design of our frame-
work or our results.
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of the specific exploration level. A lower number leads to
more grid cells of smaller width per dimension. Each cell in
our grid covers a certain range of attribute values for each
of the d exploration attributes. Therefore, each cell includes
a set of unique attribute value combinations and it includes
the data objects that match these attribute values.

Discovery Phase. Our exploration starts at the highest
exploration level i where d ¼ 100 and includes a single grid
cell. At each level it retrieves one random object from each
non-empty cell. In the next iteration it samples the lower

level i ¼ iþ 1 where d=2i until the user terminates the
exploration. If no relevant object is retrieved from one cell,
we can safely infer that the whole grid cell is not included in
any relevant area. However, sub-areas of the grid could par-
tially overlap with some relevant areas. By moving to the a
lower exploration level, we “zoom-in” into this grid cell
and increase the probability of discovering a relevant object.

3.2 Misclassified Samples Exploitation

While the object discovery phase bootstraps the discovery of
relevant objects, it extracts at most one object of interest in
each sampling area explored. In order to offer acceptable
accuracy, decision tree classifiers require a higher number
of samples from the relevant class. AIDE employs the mis-
classified samples exploitation phase which improves the accu-
racy our predictions by increasing the number of relevant
objects in our training set.

Misclassified objects can be categorized to: (i) false posi-
tives, i.e., objects that are categorized as relevant by the clas-
sifier but labeled as irrelevant by the user and (ii) false
negatives, i.e., objects labeled as relevant but categorized as
irrelevant by the classifier. False positives are less common
because the classifications rules of decision trees aim to
maximize the homogeneity of their predicted relevant and
irrelevant areas [3]. Practically, this implies that the classi-
fier defines the relevant areas such as the relevant samples
they include are maximized while minimizing the irrelevant
ones. In fact, most false positives are due to wrongly pre-
dicted boundaries of these areas. Fig. 3 shows examples of
false positives around a predicted relevant area. Elimination
of these misclassified samples will be addressed by the
boundary exploitation phase (Section 3.3).

False negatives on the other hand are objects of interest that
belong in an undiscovered relevant area. Examples of false neg-
ative are also shown in Fig. 3. Relevant areas are undiscovered
by the decision tree due to insufficient samples from within
that area. Hence, AIDE increases the set of relevant samples
by collectingmore objects around false negatives.

Clustering-Based Exploitation. Our misclassified exploita-
tion phase operates under the assumption that relevant
tuples will be clustered close to each other, i.e., they

typically form relevant areas. This implies that sampling
around false negatives will increase the number of relevant
samples. Furthermore, false negatives that belong in the
same relevant area will be located close to each other.
Hence, AIDE generates clusters of misclassified objects and
defines a new sampling area around each cluster. Specifi-
cally, it creates clusters using the k-means algorithm [3] and
defines one sampling area per cluster. An example of a clus-
ter of false negatives is shown in Fig. 3.

The main challenge in this approach is identifying the
number of clusters we need to create. Ideally, we would like
this number to match the number of relevant areas we have
“hit” so far, i.e., the number of relevant areas from within
which we have collected at least one object. We argue that
the number of relevant objects created by the object discov-
ery phase is a strong indicator of the number of relevant
areas we have already “hit”. The object discovery phase
identifies objects of interest that belong to different areas
or the same relevant area. In the former case, our indicator
offers correct information. In the latter case, our indicator
will lead us to create more clusters than the already “hit” rel-
evant areas. However, since these clusters belong in the
same relevant area they are typically close to each other and
therefore the decision tree classifier eventually “merges”
them and converges to an accurate number of relevant areas.

In each iteration, the algorithm sets k to be the overall
number of relevant objects discovered in the object discov-
ery phase. Since our goal is to reduce the number of sam-
pling areas (and therefore the number of sample extraction
queries), we run the clustering-based exploitation only if k
is less than the number of false negatives. Specifically, we
collect samples within a distance yi from the center of each
cluster at each dimension. If no cluster is created, we sample
within distance yi at each dimension from each false nega-
tive. In either case we retrieve f random samples within the
sampling area. The f value should be picked to ensure the
relative proportion of relevant and irrelevant samples
allows the classifier to identify the relevant areas with as
few exploration rounds as possible. We observed that a rela-
tive proportion of 1:10 of relevant versus irrelevant samples
is sufficient. Since the number of irrelevant samples depend
on the size of the relevant area, one can use an adaptive
approach and set the f value in each iteration to be the 1/10
of the number of irrelevant samples already collected.

The parameter yi defines the sampling area and affects
the number of relevant samples we collect around each mis-
classified object. Setting yi to a value that maximizes the
overlap of the sampling area with the actual relevant area
will allow AIDE to collect more relevant samples and iden-
tify the relevant area with less exploration rounds. If a clus-
ter of misclassified is formed, we set yi to be the distance of
the farthest cluster member from the center of the cluster in
the dimension i. This guarantees that we will collect mostly
relevant samples. Otherwise, we initially set yi to a small
value (the same for all dimensions) and we automatically
adjust it. Specifically, if no new relevant samples are discov-
ered after the first sampling around a misclassified, we con-
clude that the sampling area exceeds the relevant area in at
least one dimension. We then decrease yi in all dimensions
and we sample closer to the relevant sample. We repeat the
process until the relevant samples can form a cluster of mis-
classified samples.

Fig. 3. Misclassified objects and cluster-based sampling.
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3.3 Boundary Exploitation

Given a set of relevant areas identified by the decision tree
classifier, our next phase aims to refine these areas by incre-
mentally adjusting their boundaries. This leads to better char-
acterization of the user’s interests, i.e., higher accuracy of our
final results. In this section,wedescribe our general approach.

AIDE represents the decision tree classifierCi generated at
the ith iteration as a set of hyper-rectangles in a d-dimensional
space defined by the predicates in Pr

i

S
Pnr
i , where the predi-

cates Pr
i characterize the relevant areas and predicates Pnr

i

describe the irrelevant areas.We iteratively refine these predi-
cates by shrinking and/or expanding the boundaries of the
hyper-rectangles. Fig. 4 shows the rectangles for the classifier
in Fig. 2. If our classification is based on d attributes (d ¼ 2 in
our example) then a d-dimensional area defined by p 2 Pr

i

will include objects classified as relevant (e.g., areas A and D
in Fig. 4). Similarly, objects in an area defined by p 2 Pnr

i are
classified as irrelevant (e.g., areas B andC in Fig. 4).

AIDE eliminates irrelevant attributes from the decision
tree classifier by domain sampling around the boundaries.
Specifically, while we shrink/expand one dimension of a
relevant area we collect random samples over the whole
domain of the remaining dimensions. Fig. 4 demonstrates
our technique: while the samples we collect are within the
range 11 � dosage � 9 they are randomly distributed on the
domain of the age dimension.

Our evaluation showed that this phase has the smallest
impact on the effectiveness of our model: not discovering a
relevant area can reduce our accuracy more than a partially
discovered relevant area with imprecise boundaries. Hence,
we constrain the number of samples used during this phase
to a. This allows us to better utilize the user effort as he will
provide feedback mostly on samples generated from the
previous two, more effective phases.

Let us assume the decision tree has revealed k d-

dimensional relevant areas. Each area has 2d boundaries.

Hence we collect a=ðk� 2dÞ random samples within a nor-
malized distance �x from each boundary. This approach is
applied across all the boundaries of the relevant hyper-
rectangles, allowing us to shrink/expand each dimension of
the relevant areas. The new collected samples, once labeled
by the user, will increase the recall metric: they will discover
more relevant tuples (if they exist) and eventually refine the
boundaries of the relevant areas.

The x parameter can affect the number of samples
needed to converge to the real relevant boundary. If the dif-
ference between the predicted and real boundaries is less
than x, this phase will retrieve both relevant and irrelevant
samples around the boundary and allow the decision tree to
more accurately predict the real boundary of the relevant

area. Otherwise, we will mostly collect relevant samples
since the sampling area will not overlap with the relevant
area. This will swill increase the number of samples we will
need to converge to an accurate boundary.

This phase includes a number of further optimizations,
such as detecting and avoiding sampling overlapping areas
as well as adjusting the number of samples to the conver-
gence rate of the user model. These optimizations improve
AIDE’s effectiveness and efficiency and they are described
in detail in [7].

4 PERFORMANCE OPTIMIZATIONS

In this section we describe a set of novel optimizations we
introduced in AIDE. These include techniques that: (a) han-
dle exploration on skewed data distributions, (b) leverage
the informativeness of samples to improve AIDE’s effective-
ness, (c) extend the expressiveness of the user feedback
model to accelerate the convergence to an accurate model
and (d) reduce the size of our exploration space to offer
highly interactive times. We note that the first three techni-
ques are new optimizations that we added to the original
version of AIDE introduced in [7], [8].

4.1 Skew-Aware Exploration

Skewed data distributions are prevalent in virtually every
scientific domain of science. In our framework, skewed data
distributions could hinder the discovery of relevant objects
due to the fact that our initial exploration step (Section 3.1)
distributes the number of collected samples evenly across
the data space. In the presence of skew, this approach slows
the convergence to an accurate user model, since dense
areas will be under-sampled compared with the sparse
ones. To address this challenge we introduce a new sam-
pling technique designed to operate effectively on both uni-
form and skewed data distributions.

Our hybrid approach combines the grid-based explora-
tion with a clustering-based sampling that identifies dense
areas and increases the sampling effort within them. This
clustering-based approach operates on multiple exploration
levels. For a given exploration level with k clusters, we clus-
ter all data in the dataspace using the k-means algorithm [3].
By default our highest level creates a single cluster and each
level doubles the number of clusters of its previous one. The
clustering is performed offline and these exploration levels
can be used by all users.

AIDE maintains also its grid-based exploration levels as
described in Section 3.1. For uniform distributions, the
cluster-based and the grid-based sampling areas overlap. In
this case, sampling within each grid cell as described in Sec-
tion 3.1 is sufficient to discover relevant areas. However, in
the presence of skewed exploration domains most of the
clusters will be concentrated to dense areas leaving sparse
areas under-sampled. Maintaining our grid-based sampling
areas allows us to sample also sparse sub-areas and
discover relevant areas of low density.

Our hybrid approach starts by sampling at the highest
exploration level (i.e., with one cluster and one grid cell)
and moves on at each iteration to the next lower level until
the user terminates the exploration. At each level it samples
dense areas by collecting one random sample within each
cluster of that level. Next, it samples sparse sub-areas by

Fig. 4. Boundary exploration for the relevant areas A and D.
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retrieving one random sample within specific grid cells of
the same exploration level. These are the non-empty grid
cells from within which no sample has been retrieved yet.

The user is presented with the samples collected by both
the grid-based and the cluster-based sampling areas. This
hybrid approach allows us to adjust our sample size to the
skewness of our exploration space (i.e., we collect more
samples from dense sub-areas) while it ensures that any
sparse relevant areas will not be missed (i.e., sparse sub-
areas are sufficiently explored).

4.2 Probabilistic Sampling

AIDE relies on a pool-based active learning paradigm for
discovering user interests, i.e., samples are picked from a
pool of unlabeled data objects and presented to the user for
labeling. Existing pool-based sampling strategies [5] ex-
haustively examine all unlabeled objects available, search-
ing for the best sample to show to the user. Clearly, such an
approach cannot scale on big datasets. AIDE eliminates this
exhaustive approach by randomly sampling a small number
of strategically selected sub-areas in the exploration space.

Random sampling is highly effective. Especially in the
boundary exploitation step, random sampling distributes the
samples across thewhole domain of our exploration attributes
which eliminates irrelevant attributes from the classifier (see
Section 3.3). However, it suffers from certain limitations. In
particular, in the misclassified exploitation phase, random
sampling treats each sample uniformly and it does not lever-
age the informativeness of the samples, which could poten-
tially lead faster to an accurate user model. In other words,
random sampling does not answer the question “which can-
didate samples to show to the user in order to reduce the total
number of labeled samples needed for learning”. To address
this question, AIDE includes a new probabilistic sampling strat-
egy for themisclassified exploitation phase.

Active learning has proposed a number of sample selec-
tion approaches that evaluate the informativeness of unla-
beled samples [5]. In all these strategies the informativeness
of a sample (e.g., the probability of being relevant or not) is
either generated from scratch or sampled from a known dis-
tribution. In AIDE, we do not assume any distribution of
relevant/irrelevant object. Instead we leverage the user’s
relevance feedback to calculate for each unlabeled object its
informativeness, i.e., its probability of being labeled as rele-
vant or irrelevant (aka posterior probability). Given this
probability, we use the uncertainty sampling strategy to iden-
tify the next set of samples to show to the user.

We now discuss how to evaluate the posterior probability
of unlabeled samples, given a set of relevant samples Sþ and
irrelevant samples S�. AIDE considers each labeled sample as
basis for a nearest neighbour classifier with only one training
sample and considers each unlabeled object to be a test exam-
ple that has to be classified into the relevant or non-relevant
class. We then combine these classifiers in order to “blend”
information from all the user’s collected feedback [9], [10].

Formally, given a sample labeled as relevant by the user sþ,
the probability that an unlabeled sample x is relevant (r) is

pxðrjsþÞ / expð�similarityðx; sþÞÞ;
where similarityðx; sþÞ returns the similarity value between
x to sþ. Intuitively, this formula indicates that the

probability of a sample x being relevant increases exponen-
tially with its similarity to the relevant sample sþ. This is in
accordance to our former argument that relevant samples
will be clustered together in the exploration space and will
be forming relevant areas.

Analogously, we assume that the probability of a sample
x being non-relevant (n) increases exponentially when the
sample is similar to a sample s� labeled as non-relevant by
the user

pxðnjs�Þ / expð�similarityðx; s�ÞÞ:

To calculate the posterior probability of a sample x being
relevant, we combine the individual classifiers from the set
of relevant samples Sþ and the set of irrelevant samples S�
by using the sum rule [10]. Specifically, given that
pxðr j sþÞ ¼ 1� pxðn j s�Þ,

pxðrjðSþ; S�ÞÞ ¼ a

jSþj
X

sþ2Sþ
pxðrjsþÞ

þ 1� a

jS�j
X

s�2S�
1� pxðnjs�Þ;

where a is a weighting factor we added to allow us to
change the impact of the relevant and non-relevant samples.
In the above formula if a ¼ 1 we only take into account its
distance from the set of relevance samples to calculate its
posterior probability. In the opposite case if a ¼ 0 we only
consider its distance from the set of samples that are labeled
as non-relevant.

Given the posterior probability of a sample, we use the
uncertainty sampling strategy to select which samples to
show to the user [5]. In uncertainty sampling the user is pre-
sented with samples for which the classifier is the most
uncertain about. When using a binary classification model,
like in our case, uncertainty sampling selects the sample
whose posterior probability of being positive is nearest to
0.5 [5]. These are the samples that we are the least certain
about their relevance.

We apply this approach in our misclassified exploitation
phase as follows. Our sampling areas are defined around the
clusters ofmisclassifiedwe have identified. Specifically, given
a cluster of size c we retrieve all samples within a distance yi
from the farthest cluster member in each dimension i. Next,
we calculate the posterior probability for each of these sam-
ples andwe present to the user f � c sampleswhose probabil-
ity is closest to 0.5, where f (see Section 3.2 on how f can be
set). Employing this technique allows us to discover the user’s
relevant area with less labeled samples proving the hypothe-
sis that some samples aremore informative than others.

4.3 Similarity Feedback Model

In our previous paragraphs we introduced exploration tech-
niques that rely on binary relevance feedback, i.e., the user
indicates whether the sample is relevant or not to her explo-
ration task. However, there exist numerous scenarios where
although the user cannot decidedly classify the relevance of
an object, she can indicate whether this object is “close” to
her interests. This label can be used when the user finds rel-
evant some characteristics of the object but not necessarily
all of them or if she is still uncertain about the relevance of
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the object, which is often the case when the user is unfamil-
iar with the underlying data set.

Let us consider the case of a scientist exploring an astro-
nomical dataset searching for clusters of sky objects with
unusually high brightness. Initially, the user will be able to
label star objects with high brightness values as potentially
interesting. However, her understanding of which brightness
values are in fact unusual crystallizes only after she has exam-
ined numerous sky objects of various brightness values. After
that point she can identify unusually bright sky objects and
label themas relevant. In another example,medical professio-
nals searching for clinical trials for diabetes type A on two
year old children can indicate that studies on diabetes type B
on three year old children are also of possible interest to her
(e.g., since the symptoms, medication and side effects for two
and three year old children can be quite similar). However,
shewill label as relevant only trials on two year olds.

In the technical level, using a binary feedback model
imposes a number of limitations to AIDE. In the previous
example let’s assume the user labels trials on three year old
children as relevant (since it is close to the age of the actual
patient). This will lead to a less accurate classification model
(e.g., AIDE will steer the exploration to studies on three year
olds).While the user canmodify this label in subsequent iter-
ations, this will slow the convergence of the exploration to an
effective classification model. On the other hand, labeling
these trials as irrelevant does not capture the similarity of
these trials to the actual relevant objects (e.g., studies on three
years are closer in the exploration space to the relevant trials
than studies on 10 year olds). This similarity information, if
expressed, could lead AIDE to focus its exploration on small
ages and converge to an accuratemodel with less user effort.

Furthermore, the similarity feedback could help improve
AIDE’s efficiency when predicting small areas of interest. In
our current approach, the smaller the relevant area we aim
to predict, the higher user effort (i.e., number of labeled
samples) is required. This is a practical challenge especially
when the relevant objects are clustered within very small
areas in the exploration space. The smaller the relevant area
the more zoom-in operations AIDE will execute in order to
discover a relevant sample from within that area (Sec-
tion 3.1). These operations result in sampling more areas
(i.e., grid cells), which increases the user effort as well as the
number of sampling queries processed. A more expressive
feedback model that allows users to indicate that a sample
is “close” to a relevant object could help us direct our zoom-
in operations to only promising sub-areas of the exploration
space. This will lead to an accurate user model with less
user effort and exploration overhead.

To address the above challenges, we extended our user
feedback model as follows. Users can indicate that an object
is “close” to her interests by annotating it as a “similar”
sample. This label should be used for samples with at least
one attribute value that appears interesting or similar
(“close”) to a relevant value. The user has the option to indi-
cate these attributes, i.e., the dimension on which she found
the sample to be interesting (e.g., age range in the above
medical example, brightness in the scientific example). The
system can then utilize this extra information to expedite
the exploration process. We note that our “similarity” anno-
tations do not constitute a new label for our classification

model, i.e., our decision tree classifier will continue to gen-
erate classification rules that predict only the relevant and
irrelevant classes. Next, we describe our technique.

Extended Feedback Exploration. We introduce one more
exploration phase that defines sampling areas around each
“similar” sample. Based on the definition of this label, each
such sample x is potentially “close” to a relevant object in at
least one of the exploration dimensions. AIDE by default
assumes that this similarity may be present in all dimen-
sions unless the user explicitly indicates for which dimen-
sions she discovered similar values. We refer to these as the
interesting dimensions.

Let us assume a sample x annotated as “similar’ across a
set of interesting dimensions d (which are a subset of the set
of exploration dimensions). AIDE explores all possible inter-
esting dimensions around x on the d dimensional space aim-

ing to identify relevant samples. Specifically, there are 2d

possible exploration directions around the sample, i.e., for
each dimension we explore both higher and lower values of

the x’s value on this dimension. Hence, we define 2d sam-
pling areas and we select one random sample close to the
center of each area to present to the user. In Fig. 5 we show a
scenario of a 2-dimensional exploration space (age and dos-
age from ourmedical example), where the user has indicated
as interesting only a single dimension (age). Hence, we have
created two sampling areas around the sample x and we
have selected one samplewithin each of these areas.

We define the sampling areas to be located in a distance
�gi from the “similar” sample x in each interesting dimen-
sion i. If one of the new samples we present to the user is now
closer to the relevant area we can expect that the user will
annotate it as a “similar” sample too. In the opposite case, we
assume that the user will naturally be dissatisfied with these
samples and will label them as non-relevant. Eventually one
of the sampling areas will overlap with the relevant area and
the userwill label the samplewe extract from that area as rele-
vant. Hence, sampling in a distance gi on each dimension i
from x bring us closer or inside the relevant area. In Fig. 5, let’s
assume that x is a study on five years olds. If the patient’s age
is 3 then samples with lower age groups (e.g., sample x0) will
be also annotated as “similar” while samples with higher age
groups (e.g., sample n) will be irrelevant.

The effectiveness of our gi value correlates with the range
(percentage of the normalized domain) the relevant areas si
cover in each dimension i (see Fig. 5). Let us assume gi � si
for some dimension i. Then in the next iteration we will
sample either: a) within the relevant range in dimension i or
b) closer to that relevant range compared with the previous
iteration. The first case leads directly to the relevant area. In
the second case we guarantee that we will “hit” the relevant

Fig. 5. Similarity feedback exploration.
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range in that dimension in di=gi iterations (i.e, after di=gi � 1
“similar” sample annotations), where di is the distance of
the sample x from the relevant range in dimension i. In the
opposite case where gi > si we might move towards the
relevant area but miss the area altogether; intuitively, our
”step” is so large that we “jump” over the relevant range
and never sample within it. In this case we expect the user
to label the new samples we will present to her as non-rele-
vant samples since our sampling areas are fending away
from the relevant area instead of approaching it. AIDE
detects this scenario and restarts this exploration phase
from the original x sample but a lower gi value for that
dimension i. Using this pattern, we keep adapting our gi

value until we “hit” a relevant sample.

4.4 Exploration Space Reduction

Our exploration techniques rely on sending a sampling
query to the back end database system for each defined
sampling area. Such queries can be particularly expensive.
This is especially true for the sampling queries generated by
the boundary exploitation phase since they need to fully
scan the whole domain of all attributes. Even when covering
indexes are used to prevent access to disk, the whole index
needs to be read for every query, increasing the sampling
extraction overhead.

An interesting artifact of our exploration techniques is that
their effectiveness does not depend on the frequency of each
attribute value, or on the presence of all available tuples of our
database. This is because each phase executes random selec-
tions within data hyper-rectangles and hence these selections
do not need to be deterministic. Hence, as long as the domain
value distribution within these hyper-rectangles is roughly
preserved, our techniques are still equally effective. This
observation allows to apply our exploration on a sampled
exploration space. Specifically, we generate our sampled data
sets using a simple random sampling approach that picks
each tuple with the same probability [11]. We then execute
our exploration on this smaller sampled space. Since this data
spacemaintains the same value distribution of the underlying
attribute domains, our approach offers a similar level of accu-
racy butwith significantly less time overhead.

5 EXPERIMENTAL EVALUATION

Next, we present experimental results from a micro-
benchmark on the SDSS dataset [2] and from a user study.

5.1 Experimental Setup: SDSS Dataset

We implemented our framework on JVM 1.7. In our experi-
ments we used various Sloan Digital Sky Survey datasets
(SDSS) [2] with a size of 10 GB-100 GB (3� 106 � 30� 106

tuples). Our exploration was performed on combinations of
16 numerical attributes of thePhotoObjAll tablewith differ-
ent value distributions. This allowed us to experiment with
both skewed and roughly uniform exploration spaces. A cov-
ering index on these attributes was always used. We used by
default a 10 GB dataset and a uniform exploration space on
rowc and colc, unless otherwise noted. All experiments
were run on an Intel PowerEdge R320 server with 32GBRAM
usingMySQL.We usedWeka [12] for executing the CART [3]
decision tree and the k-means algorithms. All experiments
report averages of ten runs.

Target Queries. AIDE “predicts” the selection predicates
that retrieve the user’s relevant objects. We focus on predict-
ing the results of range queries (we call them target queries)
and we vary their complexity based on: a) the number of
disjunctive predicates they include (number of relevant areas)
and b) the data space coverage of the relevant areas, i.e., the
width of the range for each attribute (relevant area size). Spe-
cifically, we categorize relevant areas to small, medium and
large. Small areas have attribute ranges with average width
of 1-3 percent of their normalized domain, while medium
areas have width 4-6 percent and large ones have 7-9
percent. We also experimented with queries with a single
relevant area (conjunctive queries) as well as complex dis-
junctive queries that select 3, 5 and 7 relevant areas. The
higher the number of relevant areas and the smaller these
areas, the more challenging is to predict them.

The diversity of our target query set is driven by the query
characteristics we observed in the SDSS sample query
set [13]. Specifically, 90 percent of their queries select a single
area, while 10 percent select only 4 areas. Our experiments
cover even more complex cases of 5 and 7 areas. Further-
more, 20 percent of the predicates used in SDSS queries cover
1-3.5 percent of their domain, 3 percent of them have cover-
age around 13, and 50 percent of the predicates have cover-
age 50 percent or higher while the median coverage is 3.4
percent. Our target queries have domain coverage (i.e., the
relevant area size) between 1-9 percent and our results dem-
onstrate that we perform better as the size of the areas
increases. Hence, we believe that our query set has a good
coverage of queries used in real-world applications while
they also cover significantly more complex cases.

User Simulation. Given a target query, we simulate the
user by executing the query to collect the exact target setof
relevant tuples. We rely on this set to label the new sample
set we extract in each iteration as relevant or irrelevant
depending on whether they are included in the target set.
We also use this set to evaluate the accuracy (F -measure) of
our final predicted extraction queries.

Evaluation Metrics. We measure the accuracy of our
approach using the F -measure (Section 2.3) of our final data
extraction predictions and report the number of labeled
samples required to reach a given accuracy level. For all our
experiments we aim for accuracy 90 percent or higher
unless stated otherwise. Our efficiency metric is the system
execution time (equivalent to user wait time), which includes
the time for the space exploration, data classification, and
sample extraction. We may also report the total exploration
time, which includes both the system execution time and the
sample reviewing time by the user.

System Parameters. To understand the impact of the
parameters used by our heuristics we conducted a sensitiv-
ity study. Next we discuss these parameters and the default
values we used.

The a parameter is the total number of samples collected
in the boundary phase. Our study showed that collecting at
least two samples for each boundary is sufficient, hence for
a d-dimensional exploration space we allocate a ¼ 2� d
samples for this phase. Even if the relevant dimensions are
less than d the extra sample size will be small relatively to
the number of samples collected through the rest of the
exploration phases.
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The x parameter is the sample distance around each
boundary and ideally it should be set such that the sam-
pling area overlaps with the relevant area (see Section 3.3).
We observed that our decision trees approximate the correct
boundary very well within a few iterations. Hence, we set
x to 0.06 percent which lead us to sample within the rele-
vant areas and improved our convergence rate. Note that
our study revealed that setting this value between 1 to 10
percent increased the total number of samples by no more
than 50 samples when running AIDE to predict areas of
small, medium or large size with 90 percent accuracy.
Hence, AIDE is quite robust to this parameter.

The f parameter is the number of samples we collect
around each misclassified or clusters of misclassfied object
and yi is the sampling distance on dimension i around each
misclassified object. Both of them can be adjusted dynami-
cally as their ideal value depends on the size of the relevant
area (see Section 3.2). Based on our sensitivity study on the
relevant areas we are using, we set f to 15 samples and yi to
2 percent of the normalized domain. These allows AIDE to
collect the necessary relevant samples to bootstrap our user
model within fewer iterations.

5.2 Effectiveness and Efficiency of AIDE

Fig. 6a shows AIDE’s effectiveness when we increase the
query complexity by varying the size of relevant areas from
Small to Medium and Large. Our queries have one relevant
area which is the most common range query in SSDS. Natu-
rally, labeling more samples improves in all cases the accu-
racy. As query complexity increases the user needs to label
more samples to reach a given accuracy level. By requesting
feedback on only 247 out of 3� 106 objects AIDE predicts
large relevant areas with accuracy higher than 60 percent
(with 386 samples we have an accuracy higher than 80 per-
cent). In this case, the user needs to label only 0.4 percent of
the total relevant objects and 0.01 percent of the irrelevant
objects in the database. Furthermore, AIDE needs only 300
labeled samples to predict medium areas with 66 percent
accuracy and small areas with 63 percent accuracy. Hence,
AIDE decreases the user effort (i.e., reviewing objects) to a few 100’s
samples compared with the state-of-the-art “manual” exploration
which involves examining 1,000’s of objects (e.g., target queries
return 26,817-99,671 relevant objects depending on the size of the
relevant areas).

We also increased the query complexity by varying the
number of areas from one (1) to seven (7). Fig. 6b shows our
results for the case of large relevant areas. While AIDE can
perform very well for common conjunctive queries (i.e.,
with one (1) relevant area), to accurately predict highly com-
plex disjunctive queries more samples are needed. How-
ever, even for highly complex queries of seven (7) areas we

get an accuracy of 60percent or higher with a reasonable
number of samples (500 labeled samples).

Fig. 6c shows the user’s wait time (seconds in average per
iteration). In all cases, high accuracy requires the extraction of
more samples which increases the exploration time. The com-
plexity of the query (size of relevant areas) also affects the
time overhead. Searching for larger relevant areas leads to
more sample extraction queries around the boundaries of
these relevant areas. However, our time overhead is accept-
able: to get an accuracy of 60 percent the user wait time per
iteration is less than 0.55 seconds for all area sizes, while to get
highly accurate predictions (90 percent-100 percent) the user
experiences 1.7 secondswait time in average.

Comparison with Random Sampling. Next, we compared
AIDE with two exploration techniques that rely on random
sampling. Random selects randomly 20 samples per iteration,
presents them to the user for feedback and then builds a clas-
sification model. Random-Grid uses our exploration explora-
tion grid (Section 3.1) and selects one random sample within
each grid cell, i.e., it collect samples that are evenly distributed
across the exploration space. This approach also collects 20
samples per iteration. For comparison reasons, AIDE also lim-
its the number of new samples it extracts per iteration: we
sum the number of samples needed for the boundary and the
misclassified exploitation and we use the remaining out of 20
samples to sample grid cells.

Fig. 7a shows the number of samples needed to achieve
an accuracy of at least 70percent when our target queries
have one relevant area of varying size. For this experiment,
we set F -measure to 70percent because Random-Grid and
Random cannot converge to accuracy higher than 70percent
for most area types given a reasonable number of samples
(less than 6,000). AIDE is consistently highly effective: it
requires no more than 373 samples for any area size always
outperforming the baselines. Random fails to discover small
areas of interest even when we increase the labeled set to
6,000 samples, while Random-Grid needs 5,520 samples in
average. For medium and large areas Random and Random-
Grid are still highly ineffective compared with AIDE.

Comparison with Active Learning. Fig. 7b compares the pre-
diction accuracy of AIDE with Query By Bagging (QBB) [14],
an active learning technique for decision tree classifiers. The
results are for a single large area. Given a new set of labeled
objects at each round, QBB creates an ensemble of decision
trees on different training sets generated through sample
replacement. It then examines all database objects to select for
labeling the one onwhich these classifiers disagreemost. QBB
assumes a training set is provided a-priori with sufficient rele-
vant/irrelevant samples to bootstrap the generation of the
decision trees. Aiming to support real-life exploration scenar-
ios, AIDE does not have this assumption. Hence, wemodified

Fig. 6. (a) and (b) AIDE’s effectiveness, i.e., prediction accuracy, is shown. (c) Efficiency results, i.e., time overhead, are shown.
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QBB to use AIDE’s object discovery phase to collect its initial
labeled sample set. Fig. 7b reveals that AIDE performs better
than QBB, i.e., converges to a high accuracy with less samples
than QBB. This is because AIDE generates the initial training
set more strategically, e.g., after hitting the first few relevant
samples, the misclassified exploitation phase discovers
enough relevant objects to boostrap the generation of its deci-
sion tree and in the following steps the boundary exploitation
improves the accuracy of that treewith very few samples. Fur-
thermore, QBB requires a much higher exploration time than
AIDE, as it needs to examine all database objects in each itera-
tion in order to decidewhich one to present to the user.

Impact of Exploration Phases.We also studied the impact of
each exploration phase independently. Fig. 7c presents the
number of samples we need to reach different accuracy lev-
els for queries with one large relevant area. We compare
AIDEwith two variants: one that uses only the object discov-
ery phase (Obj-Discovery) and one that adds only themisclas-
sified exploitation phase (Obj-Discovery+Misclassified). The
results show that combining all three phases of AIDE gives
the best results, i.e, better accuracy with fewer labeled sam-
ples. Specifically, using only the object discovery phase
requires more than 800 labeled samples to reach an accuracy
higher than 20 percent. Adding themisclassified exploitation
to the object discovery phase increases the accuracy by an
average of 54 percent. Finally, adding the boundary exploita-
tion phase further improves the accuracy by an average of 15
percent. Hence, combining all three phases is highly effective in
predicting relevant areas while reducing the amount of user effort.

5.3 Skewed Exploration Spaces

We also studied AIDE in the presence of skewed explora-
tion spaces. We experimented with three types of 2-dimen-
sional exploration spaces: (a) Uniform where we use two
roughly uniform domains (rowc, colc), (b) Hybrid that
includes one skewed (dec) and one uniform domain
(rowc) and (c) Skewed that uses two skewed domains (dec,
ra). We also experimented with the density of the target
queries: (a) Dense queries involve dense relevant areas and
(b) MixQ queries cover both sparse and dense ranges of the

relevant domains. Fig. 8a shows the number of samples
needed to achieve accuracy greater than 90 percent for
queries with one large relevant area. We compare three var-
iants of our system: (a) AIDE-Grid that uses the grid-based
technique for the relevant object discovery phase, (b) AIDE-
Clustering that uses only clustering-based sampled for
skewed distributions but not sampling within grid cells and
(c) AIDE-SkewAware that is a hybrid of the two previous
techniques as described in Section 4.1.

The results show that AIDE-SkewAware works best
under any combination of query density and exploration
space distribution. When the distribution is uniform (Uni-
form) clusters and grid cells are highly aligned providing
roughly the same results for all three techniques. Note that in
this case all our relevant areas will be dense. In the highly
skewed data space (Skewed) we also used only dense rele-
vant areas as the sparse areas were practically non popu-
lated. Here, both the clustering-based technique and the
skew-aware technique outperform the grid-based approach
requiring 82 percent less samples. This is because clusters
are formulated in the dense sub-space while grid cells
are created uniformly across the data space covering non
populated exploration areas. This allows AIDE-Clustering
and AIDE-SkewAware to sample smaller, finer-grained
areas than the grid-based approach, eliminating the need to
zoom into the next exploration level.

Finally, for the case of hybrid distributions (Hybrid) we
picked our relevant area to cover both dense ranges (for the
uniform domain) and sparse ranges in the skewed domain,
resulting to our mixed query case (MixQ). Here, the cluster-
ing technique creates most of its clusters on the dense areas
and hence fails to discover relevant objects in the sparse
ones. It therefore has to zoom into finer exploration levels
and it requires 47percent more samples to converge to the
same accuracy as the grid-based technique. However, AIDE-
SkewAware samples both the dense areas where the clusters
are located and the sparse areas which are covered by the
grid cell and it discovers the relevant area. We conclude that
combining sampling within clusters and grid cells is the best strat-
egy for exploring both skewed and non skewed domains.

Fig. 7. (a) and (b) compare AIDE with other exploration techniques while (c) demonstrates the effectiveness of the exploration phases.

Fig. 8. Impact of performance optimizations: (a) evaluation of the skew-aware exploration. (b) and (c) Evaluation of the probabilistic sampling.
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5.4 Probabilistic Sampling

Next, we examine the effectiveness and efficiency of the
probabilistic sampling technique (Section 4.2). In Fig. 8b we
measure the number of samples needed to reach an F -mea-
sure greater than 90 percent when using the probabilistic
sampling technique in the misclassified exploitation phase
(AIDE+Probabilistic). The figure presents the results for
small, medium and large areas. The results show that AIDE
requires less labeled samples to reach an accuracy when using the
probabilistic sampling strategy. In average this new approach
can reduce the user effort by 35 percent. This confirms our
hypothesis that some samples in the misclassified sampling
areas are more informative than others and they can be lev-
eraged to improve the user’s experience.

We also studied the overhead of this approach. Fig. 8c
shows that the uncertainty sampling technique increases
our user wait time per iteration in all cases. This is because
in each iteration we have to extract all samples within the
sampling area and for each sample calculate its posterior
probability and decide whether to present it to the user or
not. As a result, the user wait time per iteration was
increased by 50 percent in average. However, the time over-
head was less than 2.9 seconds in average which should not
affect the user’s interactive experience.

5.5 Similarity Feedback Model

We also studied the effect of extending our relevance feed-
back model to include labels for similar but not necessarily
relevant samples. Here, we label as “similar” the samples
that are within a distance less than 10 percent from an actual
relevant object (this distance is measured in any of the
exploration dimensions). Otherwise, we label the sample as
irrelevant. Fig. 9a presents AIDE’s effectiveness when using
the binary feedback approach and the extended feedback
model. Here, we vary the size of the target relevant area
from small to medium and large and we measure the num-
ber of samples AIDE needs to reach an F -measure higher
than 90 percent. The results indicate that annotating the similar-
ity of objects can significantly reduce the labeling effort of the user.
This improvement is 38 percent in average across all area
sizes. This feedback is particularly useful in the case of the

small relevant areas where the user effort can be significant.
Here, the user’s “similar” labels steer the exploration
towards the direction of the relevant area and the labeling
effort is significantly reduced. We also measured the impact
of this model on the user wait time and in all cases it was
under 0.1 seconds which should be unnoticeable by the
user. We omit the graph due to space limitations.

5.6 Scalability

Exploration Space Dimensionality. Fig. 9b shows the number
of labeled samples required to reach more than 90 percent
accuracy as we increase the dimensions of a skewed explo-
ration space from 2 up to 16 and vary the size of the relevant
areas. Our target queries have conjunctions on two attrib-
utes. The graph reveals that the labeling overhead increases
linearly to the number of dimensions. This is because more
dimensions increase the number of sampling areas for
the object discovery phase and boundary phase (more
attributes/boundaries appear in the decision tree split
rules). However, even with 16 dimensions AIDE needs only
923 samples to reach more than 90 percent accuracy. We
anticipate that in real scenarios the dimensionality of the
data space will be significantly less. As an example, 1.8 mil-
lion SDSS queries collected in April 2016 revealed that 54
percent of user queries include less than 4 dimensions.
Fig. 9c shows that even with 16 dimensions the user wait-
time per iteration is always less than 4.1 seconds for all area
sizes. The results reveal a small increase in the user’s wait
time as we add more dimensions.

Database Size. Fig. 10a shows AIDE’s accuracy with a
given number of labeled samples for dataset sizes of 10 GB,
50 GB and 100 GB. Our target queries have one large rele-
vant area and the average number of relevant objects
increases as we increase the size of the dataset (our target
query returns in average 26,817 relevant objects in the 10
GB, 120,136 objects in the 50 GB and 238,898 objects in the
100 GB database). AIDE predicts these objects in all datasets
with high accuracy without increasing the user’s effort. We
conclude that the size of the database does not affect our effective-
ness. AIDE consistently achieves high accuracy of more than
80 percent on big data sets with only a few hundred samples

Fig. 9. (a) Impact of similarity feedback model (1 area). (b) and (c) Evaluation for multi-dimensional exploration spaces (1 area).

Fig. 10. (a) AIDE’s effectiveness on big data sets is shown and (b) and (c) show the impact of our exploration space reduction.
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(e.g., 400 samples). These results were consistent even for
more complex queries with multiple relevant areas.

Exploration Space Reduction. Applying our techniques to
larger datasets increases the time overhead since our sam-
pling queries have higher response times. One optimization
is to execute our exploration on a sampled database (Section
4.4). In this experiment, we sampled datasets of 10 GB, 50
GB, 100 GB and generated the 10 percent sampled datasets
of 1 GB, 5 GB and 10 GB, respectively. Fig. 10b shows the
absolute difference of the final accuracy (10 GB-Accuracy, 50
GB-Accuracy, 100 GB-Accuracy) when AIDE is applied on
the sampled and on the total datasets. The average differ-
ence is no more than 7.15 percent for the 10GB, 2.72 percent
for the 50 GB and 5.85 percent for the 100 GB data set. In the
same figure we also show the improvement of the system
execution time (10 GB-Time, 50 GB-Time, 100 GB-Time). For
10 GB (and a sampled dataset of 1 GB) this time is reduced
by 88 percent in average, while for the larger datasets of 50
GB and 100 GB it is reduced by 96-97percent.

Fig. 10c shows the improvement of the system execution
time when AIDE runs over the sampled data sets. Here, we
measure the system execution time to reach an accuracy
higher than 90 percent and for varying number of large areas.
The average time per iteration is 2.8 seconds for the 10 GB,
37.7 for the 50 GB and 111 for the 100 GB database. By operat-
ing on the sampled datasets we improved our time by more
than 84 percent while our average improvement for each
query type was more than 91 percent. Our improved itera-
tion time is 0.37 second for the 10 GB, 2.14 seconds for the 50
GB and 5.3 seconds for the 100 GB dataset, in average.Hence,
AIDE can scale to big datasets by applying its techniques on sam-
pled datasets. This incurs low impact on the accuracy while it sig-
nificantly improves the system execution time.

5.7 User Study Evaluation

Our user study used the AuctionMark dataset [15] that
includes information on auction items and their bids. We
chose this “intuitive” dataset, as opposed to the SDSS data-
set, because the user study requires identifying users with
sufficient understanding of the domain. We identified a
group of graduate students with SQL experience and
designed their exploration task to be “identifying auction
items that are good deals”. Note that users should not have
an upfront understanding of the exact selection predicates
that would collect all relevant objects.

The exploration data set had a size of 1.77 GB and it was
derived from the ITEM table of AuctionMark benchmark. It
included seven attributes: initial price, current price, num-
ber of bids, number of comments, number of days an item is
in an auction, the difference between the initial and current
item price, and the days until the auction is closed for that
item. Each user explored the data set “manually”, i.e., itera-
tively formulating exploratory queries and reviewing their
results until he obtained a query, Q, that satisfied his inter-
ests. In each iteration, i, we recorded (a) the number of
objects, oi, returned by the user query and (b) the time the
user spent reviewing those objects, ti. Thus, for each user
we were able to calculate the average review time per object,

t ¼
PN

tiPN
oi
, where N is the total number of queries the user

executed during his exploration. This time varied signifi-
cantly by user depending on the time each one took to

decide whether he was interested or not in the returned
results of his manual queries.

Our user did not directly interact with AIDE. Instead we
took the user’s final query Q as the true interest of the user
and used it to simulate the user. In other words, we labeled
each new sample as relevant if the sample was included in
the results ofQ and as irrelevant otherwise. This guaranteed
that objects received the same label in both the manual and
AIDE’s exploration.

We thenmeasured howwell AIDE can predictQ by simu-
lating each user 10 times. For each run, we measured the
number of labeled samples that AIDE needed in order to dis-
cover the results of Q with 100 percent accuracy. We report
the average number of labeled samples during the 10 runs in
Table 1. We also compared the total exploration time of the
two techniques, where the exploration time consists of the
system execution time (equivalent to the user wait time) and
the object review time. For AIDE, since the actual review
time was not available in simulation, we measured the
review time as the average review time per object, collected
from the manual exploration, multiplied by the number of
samples that AIDE needed to reach 100 percent accuracy.

The results demonstrated that AIDE would be able to
reduce the user’s reviewing effort by 66 percent in average
(Reviewing savings column in Table 1). Furthermore, with
the manual exploration users were shown 100s of thousands
objects in total (Manual returned objects) while AIDE shows
them only a few hundred strategically selected samples.
Furthermore, with the manual exploration our users needed
about an hour to complete their task (Manual time). AIDE
was able to reduce the exploration time 47 percent in aver-
age (AIDE time). We believe these time savings will be even
more pronounced for more complex exploration tasks (e.g.,
in astronomical or medical domains) where examining the
relevance of an object requires significant time.

Our user study revealed that five out of the seven users
used only two attributes to characterize their interests. Simi-
larly to our SDSS workload, the most common type of query
was conjunctive queries that selected a single relevant area.
Our exploration domain was highly skewed and all our rel-
evant areas were on dense regions. These characteristics
indicate that our micro-benchmark on the SDSS dataset was
representative of common exploration tasks while it also
covered highly more complex cases, i.e., small relevant
areas and disjunctive queries selecting multiple areas.

6 RELATED WORK

Query by Example. Related work on “Query-By-Example”
(QBE) we originally proposed in [16]. Most recent

TABLE 1
User Study Results

User Manual:
returned
objects

Manual:
reviewed
objects

AIDE:
reviewed
objects

Reviewing
savings
(%)

Manual:
time
(min)

AIDE:
time
(min)

1 253,461 312 204.9 34.3% 60 39.7
2 656,880 160 82.4 48.5% 70 36.3
3 933,500 1,240 157 87.3% 60 7.9
4 180,907 600 319 46.8% 50 28.2
5 2,446,180 650 288.5 55.6% 60 27.5
6 1,467,708 750 334.5 55.3% 75 33.8
7 567,894 1,064 288.4 72.8% 90 24.8
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work includes querying knowledge graphs by example
tuples [17], formulating join queries based on example out-
put tuples [18] and inferring user queries by asking for feed-
back on database tuples [19], [20]. Finally, in [21] they learn
user queries based on given value assignments used in the
intended query. These systems provide alternative front-
end query interfaces that assist the user formulate her query
and do not attempt to understand user interests nor retrieve
“similar” data objects which is AIDE’s focus.

Data Exploration. Numerous recent research efforts focus
on data exploration. The vision for automatic, interactive nav-
igation in databases was first discussed in [22] and later on
in [23]. YMALDB [24] supports data exploration by recom-
mending to the user data similar to her query results.
DICE [25] supports exploration of data cubes using faceted
search and in [26] they propose a new “drill-down” operator
for exploring and summarizing groups of tuples. Sci-
BORQ [27] relies on hierarchical database samples to support
scientific exploration queries within strict query execution
times. Idreos et al. [28] envision a system for interactive data
processing tasks aiming to reduce the time spent on data anal-
ysis. In [29] interactively explores the space based on statisti-
cal properties of the data and provides query suggestions for
further exploration while in [30] they propose a technique for
providing feedback during the query specification and even-
tually guiding the user towards her intended query. In [31]
users rely on prefetching and incremental online processing
to offer interactive exploration times for window-based
queries. SearchLight [32] offers fast searching, mining and
exploration of multidimensional data based on constraint
programming. All the above systems are different than AIDE:
we rely on the user’s feedback on data samples to predict the
user’s data interests and we focus on identifying strategic
sampling areas that allow for accurate predictions. In [33] the
authors propose a system for faceted navigation of query
results. Thiswork uses a different feedbackmodel thanAIDE;
the user provides feedback on facet conditions and not data-
base samples and our optimization goal to reduce the number
of samples does not apply on faceted search.

Query Relaxation. Query relaxation techniques have also
been proposed for supporting exploration in databases [34].
In [35], [36] they refine SQL queries to satisfy cardinality con-
straints on the query result. In [37] they rely on multi-dimen-
sional histograms and distance metrics for range queries for
accurate query size estimation. These solutions are orthogonal
to our problem; they focus on adjusting the query parameters
to reach a cardinality goal and therefore cannot characterize
user interests. In [38] they relax query conditions in order to
obtain non-empty query results. This work employs a differ-
ent feedbackmodel thanAIDE: the user rejects/accepts query
modifications and not database samples. It is nontrivial, in
fact technically challenging, to equate these two feedback
models or transform one type of feedback to the other.

Active Learning. The active learning community has pro-
posed solutions that maximize the learning outcome while
minimizing the number of samples labeled by the user [6],
[39]. However, these techniques assume either small data-
sets or negligible sample extraction costs which is not a
valid assumption when datasets span 100s of GBs and inter-
active performance is expected. Relevance feedback have
been studied for image retrieval [40], document ranking [41],

information extraction and segmentation [42] and word dis-
ambiguation [43]. All these solutions are designed for spe-
cific data types (images or text) and do not optimize for
efficient sample acquisition and data space exploration.

Collaborative and Interactive Systems. In [44] a collaborative
system is proposed to facilitate formulation of SQL queries
based on past queries and in [45] they use collaborative
filtering to provide query recommendations. However, both
these systems do not predict “similar” data object. In [46]
they cluster related queries as a means of understanding the
intents of a given user query. The focus is on web searches
and not structured databases.

7 CONCLUSION

Interactive Data Exploration is a key ingredient of a diverse
set of discovery-oriented application. In these applications,
data discovery is a highly ad hoc interactive process where
users execute numerous exploration queries using varying
predicates aiming to balance the trade-off between collect-
ing all relevant information and reducing the size of
returned data. Therefore, there is a strong need to support
these human-in-the-loop applications by assisting their nav-
igation in the data space.

In this paper, we introduce AIDE, an Automatic Interactive
Data Exploration system, that iteratively steers the user
towards interesting data areas and “predicts” her objects of
interest. Our approach leverages relevance feedback on data-
base samples to model user interests and strategically collects
more samples to refine the model while minimizing the user
effort. AIDE integrates machine learning and data manage-
ment techniques to provide effective data exploration results
(matching the user’s interests with high accuracy) as well as
interactive performance (limiting the user wait time per itera-
tion to less than a few seconds). Our experiments indicate that
AIDE is a practical exploration framework as it significantly
reduces the user effort and the total exploration time com-
pared with the current state-of-the-art approach of manual
exploration aswell as traditional active learning techniques.
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