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Abstract

A fundamental difficulty faced by groups of agents that work together is how to efficiently
coordinate their efforts. This coordination problem is both ubiquitous and challenging, espe-
cially in environments where autonomous agents are motivated by personal goals.

Previous AI research on coordination has developed techniques that allow agents to act effi-
ciently from the outset based on common built-in knowledge or to learn to act efficiently when
the agents are not autonomous. The research described in this paper builds on those efforts
by developing distributed learning techniques that improve coordination among autonomous
agents.

The techniques presented in this work encompass agents who are heterogeneous, who do
not have complete built-in common knowledge, and who cannot coordinate solely by observa-
tion. An agent learns from her experiences so that her future behavior more accurately reflects
what works (or does not work) in practice. Each agent stores past successes (both planned and
unplanned) in their individual casebase. Entries in a casebase are represented as coordinated
procedures and are organized around learned expectations about other agents.

It is a novel approach for individuals to learn procedures as a means for the group to coordi-
nate more efficiently. Empirical results validate the utility of this approach. Whether or not the
agents have initial expertise in solving coordination problems, the distributed learning of the
individual agents significantly improves the overall performance of the community, including
reducing planning and communication costs.
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1 Introduction

Research on groups of agents that work together is a large and growing field. This field covers

many diverse interests and motivations such as mobile robots, software agents, and smart objects.

A fundamental difficulty faced by interacting agents is how to coordinate their efforts when they

have overlapping or common objectives. This coordination problem [33] is both ubiquitous and

challenging, especially in environments where agents have limited knowledge about, and control

over, other agents and the world around them.

In human terms, the coordination of joint behaviors is so commonplace and constant that it

is easy to overlook or trivialize its importance and the difficulty of achieving it. Coordination

problems are regularly faced, and solved, in everyday settings such as conversations and shopping

as well as in highly structured settings such as musical ensembles or athletic teams. In order to

solve these problems, it is necessary to coordinate the expectations of the participants (about both

intentions and actions).

This paper presents learning techniques that allow agents to solve coordination problems more

efficiently. These techniques do not presume that agents have initial expertise about how to solve

coordination problems, yet provide effective guidance for agents who do have extensive a priori

knowledge. Using these techniques, at runtime, an agent acquires knowledge about the task en-

vironment and the capabilities of other agents. Thus, the agent’s future behavior more accurately

reflects what works (or does not work) in practice.

In order to recall practical solutions to coordination problems, agents learn coordinated pro-

cedures that are derived from past, possibly unplanned, successful joint behavior. A coordinated

procedure encodes information about both domain actions and expectations of one agent about

other agents. Learned procedures are extracted from execution traces, which are the result of mul-

tiple planning sessions occurring at various times during the activity.

It is a novel approach for individuals to learn procedures so that the group can coordinate more

efficiently. Learning coordinated procedures extends single-agent case-based reasoning and pro-

cedural learning (e.g. [25, 14, 19, 38]) into multi-agent domains. However, multi-agent domains

pose numerous technical challenges that are not addressed by prior work. In addition, using run-

time episodes as the currency of memory differs from traditional procedural learning techniques,

which are centered on plans or plan histories that are the output of a single planning session.

The agents in this work are motivated by personal goals and do not reason about group-wide

objectives or seek to establish or maintain group-wide mental attitudes. Such agents are consid-

ered to be autonomous. Further, the model of joint activity presented in this work encompasses

autonomous agents who are heterogeneous, who do not have complete built-in common knowl-

edge, and who cannot coordinate solely by observation. As a result, this model is better suited

2



for open-world environments than previous research on either solving coordination problems ef-

ficiently from the outset [10, 7, 37] or learning to solve recurrent coordination problems more

efficiently in the future [36, 17, 18, 31].

The next section provides a more detailed account of coordination problems. Section 3 presents

an overview of our model of joint activity; Section 4 describes the techniques by which agents learn

coordinated procedures; and Section 5 contains results, including examples of learned procedures.

Following a discussion of related research, the paper concludes with a brief summary of the con-

tributions of this work.

2 Coordination problems

Interacting agents face a coordination problem when, to achieve a shared goal, they must coordi-

nate their individual actions. In order to solve coordination problems, agents must coordinate their

expectations about both intentions and actions.

Expectations are coordinated by means of coordination devices. A coordination device is any-

thing that enables the group to form a mutual belief about how the individual agents will interleave

their individual actions. Notable coordination devices are explicit communication, precedence,

(perceptual) prominence, and convention. Coordination cannot be guaranteed without coordina-

tion devices since the actions of an agent cannot always be reliably predicted by others. The kinds

of coordination devices available to the agents constrain the set of possible solutions to coordina-

tion problems.

Coordination problems exist when agents have a common goal, even if each agent is able

to independently achieve the goal. Solving even such simple problems may be non-trivial: the

agents may not be aware of their mutual interests, the agents may not agree on which agent should

achieve the goal, and the agents may not be able to determine whether their actions interfere with

each other.

A more interesting coordination problem arises when agents agree to execute a joint action �

but some of the participants are not ready to attempt � immediately. In this case, the group must

work together to determine when to start attempting � . Figure 1 shows a depiction of this situation

for two agents, � and � , each of whom must execute different “set up” steps.

In many circumstances, the agents will not be able to correctly determine when to start � based

solely on observation and inference. This is the case when agents are not in the same location,

when agents do not inform each other of what set up must be done, or when agents do not know

how to recognize when the others are prepared to attempt � . Note that a clock, even a global

one, cannot be relied upon to solve such coordination problems when there is uncertainty about
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���

���
� ’s preparation for �

� ’s preparation for �

� �
� and � agree to attempt � �

Figure 1: � and � must coordinate the beginning of joint action � after completing their individual
preparations for � .

action durations, possibilities of interruptions and execution failures, or unpredictable delays due

to external events.

Another common situation in which multiple agents must coordinate their efforts is when they

have differing execution abilities. In many such cases, the solution will have to be “discovered”

dynamically, through the interactions of the agents. Figure 2 shows an abstract description of this

situation for two agents who want to change an object � from an initial state � �	� ��
 to goal state

�
� � ��
 . In this figure, possible states ��� � ��
 are marked by ovals and individual actions by � and

� are labeled ����� ��
 and
��� � ��
 , respectively. (The � argument will be omitted unless needed for

clarity.) The arrows indicate the required ordering of actions for the two agents to jointly solve the

problem. Over the course of the solution, � “transitions” through eight different states. Only �
knows how to transform � � to ��� . Only � knows how to get from ��� to �
� . And only � knows

how to change ��� to �
� .
� cannot generate a plan to match this solution path on her own in the absence of planning

knowledge about � ’s capabilities. Backward chaining can identify ��� as a precursor to ��� and

forward-chaining can identify ��� as a successor to � � . However, � cannot distinguish the pair of

states � �
�����
��
 that is relevant to this solution path from the many other pairs of states that are not

relevant to any solution path.

To get a sense for how the complexity of coordination problems scales, suppose that � and

� are working on two objects, � � and � � , and that � is capable of an additional action ��� that

transforms � � into ��� . First of all, note that � is now unlikely to do � � of her own accord since � �
enables � to transform either object efficiently by herself. However, efficiently solving both goals

requires � � ! Namely, the most efficient solution possible requires that � asks for help with � � , that

� agrees to help by doing � � � � � 
 , and that � correctly adapts her plan to do �!�	� � � 
"� ���#� � � 
"� ��$%� � � 

at the same time that � does

� �	� � � 
"� ��� � � � 
�� � � � � � 
 . While none of these decisions is unlikely

independently, neither agent possesses enough knowledge to reliably act in this way so the chance

of them all occurring is less likely.
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Figure 2: � and � can solve this problem by interleaving individual actions, yet neither agent has
enough problem-solving knowledge to generate such a plan.

As the number of agents, goals, and possible solutions involved increase, there is an exponen-

tial increase in the number of decisions that must all be made “correctly” for the community to

perform optimally. The memory-based learning techniques presented in Section 4 can lead the

community to solve coordination problems more efficiently by predisposing agents to approach

familiar situations in compatible ways, which simplifies decisions about whether to cooperate and

how to adapt plans.

3 Model of joint activity

The model of joint activity [6] in this work is designed to accommodate domains with any of the

following attributes, characteristic of coordination problems found in many AI domains:

� The environment may contain a heterogeneous collection of agents.

� The goals of an agent are private knowledge unless she includes this information when com-

municating to another agent. Agents do not necessarily have the same set of goals.

� Agents make their own decisions about what order to work on their goals.

� Agents make their own decisions about whether or not to cooperate, based on their personal

goals, current plan, and belief about the state of the world.
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� Actions, both individual and joint, are not guaranteed to succeed.

� Agents may not posses enough commonality to coordinate exclusively by observation.

� Agents (implicitly) share the desire to solve coordination problems as efficiently as possible.

� Agents may not be designed with all relevant engineering information about the others, such

as other agents’ goal-ordering strategies, decision-making strategies, planning abilities, or

execution abilities.

These attributes reflect a desire to support open systems, where agents perforce have incomplete

knowledge about other agents and the task environment.1 Given these attributes, even seemingly

simple tasks contain imposing hurdles to efficient coordination. These hurdles lead to run-time

failures, mistakes, false starts, etc. that the agents overcome through re-planning, communication,

and adaptation. In the worst case, activity may not even be successfully completed if some actions

are irreversible or the goals of the agents conflict.

Coordination problems are solved at runtime through communication, observation, and infer-

ence. Agents do not communicate at planning time; they plan independently, act independently,

and only communicate when necessary to establish cooperation or to maintain coordination. Com-

munication is the only mechanism whereby agents can determine if they are cooperating. In other

words, there are no global structures, such as blackboards, for agents to use to determine if they

happen to be working on the same goal. While observation and inference are sufficient, in some

cases, to engineer the entrance to or exit from some coordination problems, the agents are not as-

sumed to possess sufficiently detailed knowledge of each other in order to solve all coordination

problems without communication.

Coordination is driven by expectations that are part of coordinated procedures. Coordinated

procedures contain domain actions and expectations about other agents; expectations are non-

primitive (i.e., not executable) actions that are represented just like domain actions.2 Expectations

are needed since the distribution of execution ability means that many plans of the agent will

contain impasse conditions, i.e., conditions that must be true for the plan to succeed but the agent

does not know how to make true on her own. For example, the following are impasse conditions

for agent � : a domain predicate that � cannot achieve, the condition that � is ready, willing, and

intending to attempt joint action � as soon possible, or the condition that � makes a request to

� . Expectations are a representation of the belief that another agent (the “enabler”) will make the

impasse condition true. However, the mere presence of an expectation in a coordinated procedure

does not guarantee that the enabler will be willing to help.

1Clearly, this model does not support systems where agents are adversarial.
2The term "plan" will be used loosely in this paper to refer to a coordinated procedure.
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Coordination points [3] are points in the activity where an actor cannot progress without assis-

tance. At coordination points, an impasse condition is false and the corresponding expectation is

at the top of the actor’s plan. The expectation is said to be satisfied when the condition becomes

true and is therefore no longer an impediment to the agent’s forward progress. Since the agents

are autonomous, there is no guarantee that the enabler will agree to try to satisfy the expectation.

Colloquially, the terms “request” and “coordination point” will be used to refer to the impasse

condition. In this sense, communication can be said to happen at and about coordination points.

Agents interleave planning and execution [1, 35, 9]. At planning time, an agent is content to

construct a plan that contains expectations about impasse conditions; at run-time, if an expectation

is not satisfied, the agent must “coordinate the expectation” by selecting a coordination mechanism

to execute. The idea is that executing the mechanism will (eventually) lead the enabler to satisfy

the expectation. Currently, the only implemented coordination mechanisms are to wait idly for

the expectation to be satisfied or to initiate a conversation about the impasse condition with the

enabler.3

Agents do not have to be in the same location to engage in communication. Communication

between two agents is a peer-to-peer connection, similar to a telephone conversation, rather than a

multi- or broad-cast. One agent calls another and either establishes a connection, gets a busy signal,

or the other agent does not respond. Once a connection is established, communication is handled

via frames — there are three initial request frame types and eighteen response frame types, twelve

of which make an alternate request to the original caller. In most frames, the type and the request

are the only slots that are filled. In practice, not all of the potential sequences of frame types are

manifested; for the trials that form the basis of the learning curves presented in Section 5, there

were 300,923 conversations comprising 94 different sequences. The communication language is

simple enough that it could be mapped to a subset of KQML [24] or some comparable other agent

language. Conversations do not occur concurrently with primitive actions.

Communication is the coordination mechanism par excellence to solve coordination problems

since it allows agents to explicitly establish mutual beliefs. However, relying on communication

has a cost, namely that the time spent conversing reduces the efficiency of the agents. Agents limit

themselves to one request per conversation to keep down both communication and plan-merging

costs.

When the first action of her coordinated procedure is a domain action, an agent will attempt

it. When the first action is an expectation, the runtime behavior of the agent depends on several

factors. First off, as a safeguard against prolonged inactivity, if an agent has waited “too long”

(e.g., exceeds a pre-determined threshold) for the expectation to be satisfied, the agent will initiate

3Responding to a request is another coordination mechanism, but it is not a direct way to coordinate an expectation.
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a discussion, possibly discovering that the other agent has malfunctioned or has opted out.4 Other-

wise, if the agent has an explicit ongoing agreement about the expectation, the agent will wait. If

neither of these rules are applicable, there are three cases that describe how the agent will choose

a coordination mechanism to coordinate the expectation.

In the first case, agent � expects agent � to be ready and willing to attempt joint action � , where

� and � are both participants of � . Currently, the only way for � to coordinate this expectation

is for � to initiate a dialog so that � can explicitly communicate her readiness; future work may

include additional ways to signal or infer when an agent is ready for joint action. This kind of

expectation is typically succeeded by � itself, which can be attempted once the expectation is

satisfied.

A second case arises when � expects � to make an impasse condition � true, where � is some

domain predicate that � wants to hold but does not know how to make true. Once � believes that

� is true (regardless of how � became true), � will usually execute an action that has � among

its preconditions. Otherwise, unless � believes that � is already working toward making � true,

� will initiate a conversation with � . A heuristic that is sometimes useful is for � to assume an

implicit agreement already exists with � ; this reduces communication in some cases and leads to

unnecessary waiting in others.

The last case involves second-order expectations. Namely, two types of recursive expectations

are created when transforming past experiences into a procedure to be stored in the casebase. One

connotes that � expects to be asked to attempt a joint action and the other connotes that � expects

to be asked to make a domain predicate true. For both types, � will wait for the request to occur

rather than initiate negotiations. In principle, expectations can be about arbitrary expectations, so

we have implemented a small subset of the possible recursive mental models (cf. [39]).

The response that an autonomous agent gives during communication depends, in part, on how

her current goals and plan relate to the request. To be specific, the agent is more likely to agree to

help if the request is compatible with one of the expectations in her own coordinated procedure.

For example, an agent that receives an expected request will agree to help if possible. Coopera-

tion is not guaranteed in most cases since agents make their own decisions. Even if they use the

same decision-making policy, agents may make different decisions because of differences in their

experiences, their assessment of the situation, and their current plan and goals. Also, even if an

agent is willing to cooperate, she may be unable to construct a plan to do so; if an agreement is

reached, each agent independently adapts her plan in order to achieve coordinated behavior (adap-

tation depends on the exact nature of the relationship between the request and the expectations in

the current plan).

4As a pragmatic way to reduce communication, an agent may not notify others when she decides to opt-out of a
prior agreement — this eliminates unnecessary communication when agents opt-out independently.
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Agents are adaptive planners [2], so the current plan may be modified or abandoned during

the course of activity as well as after making agreements. At any given point in time, an agent’s

knowledge of the external world is her perceivable environment and a map of the world that she

constructs as she goes along. Adaptation substitutes role-bindings, adds actions, or removes actions

(including expectations) when they are no longer needed given the agent’s updated beliefs about

the world. Plans are abandoned when they cannot be reconciled to the current circumstances,

the associated top-level goal is achieved (presumably by another agent), or there is an execution

failure. When an entire plan is completed or abandoned, the agent selects one or more of the

unmet top-level goals to actively work on. A coordinated procedure is created for a set of goals by

either selecting one from memory (see Section 4.1 for details) or creating one from scratch (using

expected discounted reward as the planning metric; see Appendix A for details).

3.1 MOVERS-WORLD

In the test-bed domain, called MOVERS-WORLD, the task is to move boxes from a house onto

a truck or vice versa. This domain has all of the attributes listed at the beginning of Section 3.

In other words, MOVERS-WORLD is designed to make the problem of coordinating autonomous

agents challenging.

Each agent is capable of attempting a subset of the primitive actions possible in MOVERS-

WORLD. Normally, an agent has no knowledge about action types that she is not capable of

attempting.5 In order to simplify exposition, a MOVERS-WORLD agent will be labeled as a

“lifter” (e.g., L1 and L2) or a “hand-truck operator” (e.g., HTO). A lifter can attempt to lift, carry,

put down, load, or unload boxes, either individually or jointly with another agent capable of the

same action type. A hand-truck operator can tilt, push, or stand up a hand-truck. Hand-truck

operators are not capable of handling boxes directly so loading and unloading a hand-truck requires

the cooperation of at least one lifter.

All agents are able to move and all agents use the same set of coordination mechanisms (initi-

ating a dialog, responding to a request, and silently observing). Agents capable of the same action

type may have differing abilities due to attributes such as strength. The duration of actions varies

from 20 to 40 ticks (of a simulated clock); conversation durations vary depending upon the content

of the dialog.

MOVERS-WORLD contains three types of objects: boxes, hand-trucks, and moving trucks.

The domain features that determine whether attempted actions will be successfully executed are

object size, object weight, agent strength, and object capacities. None of these are observable fea-

tures of the environment. The static observable box features are height, width, depth and material.6

5Some experiments in Section 5 relax this assumption.
6The label associated with a box includes a S, M, L or XL solely to make it easier for the human reader.
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For boxes, the size is derived from the volume of the box and the weight is a linear function of the

size and material. Object capacities specify how many other objects and how much total weight the

object can hold. Large and extra-large boxes require two agents to lift, and extra-large boxes are

too unwieldy to be carried. Hand-trucks can hold one large or extra-large box or any combination

of two smaller boxes.

While many of the primitive actions in MOVERS-WORLD have obvious BLOCKS-WORLD

analogues, MOVERS-WORLD presents a far more challenging domain. The challenge is not in

handling typical planning hurdles, such as deep search trees with large branching factors; rather,

MOVERS-WORLD agents seek to efficiently coordinate their actions in an environment in which

they have limited information about, and control over, other agents and the world.

Ticks 131 to 150: <STAND-HANDTR HANDTR3 PR24-STREET1> by HTO successful
Ticks 151 to 163: HTO and L1 converse

"L1, would you help me achieve (ON PR24-MBOX0 TRUCK3)?"
"HTO, I’ll help, but you’ll have to wait a bit."

Ticks 164 to 188: <MOVE PR24-STREET1> by L1 successful
Ticks 189 to 223: <UNLOAD PR24-MBOX0 HANDTR3> by L1 successful
Ticks 224 to 258: <LOAD PR24-MBOX0 TRUCK3> by L1 successful

Figure 3: Coordination based on first-principles plans.

Figure 3 shows an example involving coordination in unloading a box from a hand-truck and

loading it onto the truck. The example is actual output of the system (with unrelated actions

trimmed), but it is illustrative, not prototypical; empirically, agents agree to cooperate less than

half of the time when they have different goals (as is the case in this figure). At tick 151, before

conversing, an unsatisfied expectation is the first action in HTO’s plan. Since there is no prior

agreement about the expectation, HTO initiates a dialog; after establishing an explicit agreement,

HTO waits for the expectation to be satisfied.

In Figure 4, L1 and HTO are using coordinated procedures retrieved from memory instead of

first-principles plans. In this case, the lifter’s plan contains an expectation that HTO will request

a service. Although the two agents are working from compatible plans, L1 waits “too long”7 for

HTO to make the expected request. As it turns out, L1’s inquiry comes in the same tick that

HTO would have made the request, so the conversation proceeds smoothly. From an efficiency

stand-point, this is no better than a first-principles solution; however, the outcome is more robust.

Figure 5 shows a scenario when agents are acting from incompatible plans recalled from mem-

ory. At tick 633, an expectation that L2 will get LBOX3 onto the truck is the first action in HTO’s

plan; HTO coordinates this expectation as if an implicit agreement existed. As a result, 160 ticks

went by without any progress being made because the lifters did not see the situation in the same

7160 ticks is the threshold for waiting "too long" for the runs in this paper.
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Ticks 299 to 318: <STAND-HANDTR HANDTR3 PR36-STREET1> by HTO successful
Tick 317: L1 has waited too long for an expected request
Ticks 319 to 375: HTO and L1 converse

"HTO, I was expecting a call about (ON PR36-MBOX7 TRUCK3)."
"L1, would you help me achieve (ON PR36-MBOX7 TRUCK3)?"
"HTO, I’ll help, but you’ll have to wait a bit."

Ticks 376 to 400: <MOVE PR36-STREET1> by L1 successful
Ticks 401 to 435: <UNLOAD PR36-MBOX7 HANDTR3> by L1 successful
Ticks 436 to 470: <LOAD PR36-MBOX7 TRUCK3> by L1 successful

Figure 4: Coordination based on compatible coordinated procedures recalled from memory.

Ticks 507 to 541: <LOAD-TOGETHER PR41-LBOX3 HANDTR3> by L1 and L2 successful
Ticks 613 to 632: <STAND-HANDTR HANDTR3 PR41-STREET1> by HTO successful
Tick 793: HTO has waited too long for an expectation to be satisfied
Ticks 794 to 859: HTO and L2 converse

"L2, would you help me achieve (ON PR41-LBOX3 TRUCK3)?"
"HTO, I’ll help, but you’ll have to wait a bit."

Ticks 879 to 908:<PUT-DOWN-TOGETHER PR41-XLBOX2 PR41-ROOM1> by L1 and L2 successful
Ticks 909 to 933: <MOVE PR41-STREET1> by L2 successful
Ticks 948 to 1026: L2 and L1 converse

"L1, would you help me achieve (HOLDING-TOGETHER PR41-LBOX3)
via (UNLOAD-TOGETHER PR41-LBOX3 HANDTR3)?"

"L2, I’ll help, but you’ll have to wait a bit."
Tick 1020: HTO has waited too long for an expectation to be satisfied
Ticks 1027 to 1039: HTO and L2 converse

"L2, I’m tired of waiting. Are you still working on (ON PR41-LBOX3 TRUCK3)?"
"HTO, I’m still working on it. Chill out!"

Ticks 1027 to 1051: <MOVE PR41-STREET1> by L1 successful
Ticks 1073 to 1107: <UNLOAD-TOGETHER PR41-LBOX3 HANDTR3> by L1 and L2 successful
Ticks 1126 to 1160: <LOAD-TOGETHER PR41-LBOX3 TRUCK3> by L1 and L2 successful

Figure 5: Coordination based on incompatible coordinated procedures recalled from memory.

way that the hand-truck operator did. Except for the delay, everything proceeds as it would have by

first principles (the joint actions by L1 and L2 starting in ticks 879, 1073, and 1126 are preceded

by conversations that are not shown).

4 Learning to better coordinate

This section presents techniques for autonomous agents to improve upon their initial ability to solve

coordination problems. The emphasis is on learning coordinated procedures from past successful

joint endeavors. Learned procedures are culled primarily from execution traces and can encap-

sulate unplanned successes. In this work, agents individually apply memory-based techniques in

order to use learned coordinated procedures to guide future behaviors.

Agents can learn to act more efficiently even if they do not learn coordinated procedures.

Agents use and maintain tree structures, called operator probability trees, as a means of learn-
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ing how likely individual actions are to succeed. Operator probabilities are used by the baseline

planner, when making rational decisions about whether to cooperate, and when adapting coordi-

nated procedures to fit the current setting.

Coordinated procedures and operator probability trees enable an agent to use past runtime

experience to solve coordination problems more efficiently by allowing the agent to answer the

following questions:

1. In the past, did I need to ask another agent to help me achieve similar goals?

2. When I asked another agent to help me achieve similar goals, was she able to help me?

3. In the past, how frequently was the other agent willing to help me when I asked?

4. Based on past experience, is the other agent likely to help me without being asked?

5. In past similar circumstances, did another agent ask me to help achieve similar goals?

6. If I expect another agent to ask me to help achieve similar goals, what has she asked me to

do in the past?

7. If I expect another agent to ask me to do something, should I wait for her to ask me, should

I do it without being asked, or should I contact the other agent to say that I expect her to ask

me?

All learning is completely distributed; the agents learn on their own without communicating to each

other. The two different learning structures are updated at different times. Coordinated procedures

are learned only at the end of an activity, when the agent has time, and a better perspective, to reflect

on the actions that contributed to her success. Once added to her memory, the learned procedures

are available when creating plans in future activities. By contrast, operator probability trees are

updated incrementally during the activity after each action (both primitive and communicative) is

attempted.

4.1 Learning and retrieving coordinated procedures

Learning coordinated procedures enable individual agents to plan for new activities by recalling

prior successful ones. Learned procedures are extracted primarily from execution traces, which

encapsulate the history of both planned and unplanned agent interactions with the domain. Con-

sequently, procedures are learned that were not developed in a single (or multiple) planning his-

tories. In particular, unanticipated requests and responses that occur during communication allow
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the agents to acquire coordination knowledge about other agents. Thus, some coordinated proce-

dures stored in memory can represent unplanned successes that are potentially more efficient than

first-principles plans.

An item in an agent’s execution trace is an object that records a “snapshot” of one of the agent’s

runtime events. The snapshot includes a value that summarizes the event (e.g., successful action,

delayed by resource conflict, initiated a dialog, failed to initiate a dialog, idle since no current plan)

as well as the start and end times for the event. It also includes pointers to all of the related objects

that the agent was using to guide her behavior at that time: action attempted, current goals and

plan, world state at start of event, world state at end of event, current agreements, and all request

and response frames exchanged.

Execution traces include records of executed coordination mechanisms (e.g., initiating a dialog,

responding to a request, or silently observing). Those mechanisms that represent past successful

joint achievement of coordination points are converted into expectations that are part of future

plans. While some of these expectations could be regenerated upon re-use (by plan adaptation),

the expectation is explicitly represented in order to codify who satisfied the expectation. This

process adds second-order expectations (i.e., expectations about expectations) that are not present

in first-principles plans.

Acting from shared past experience can lead agents to coordinate more efficiently. For exam-

ple, when an agent receives a familiar request, she can retrieve a plan which anticipates subsequent

requests rather than merely creating a plan to satisfy that single request. Recalling coordinated

procedures from memory can be effective since remembering points of coordination predisposes

the individual agent to anticipate the actions and requests of other agents. When different agents

anticipate the same points of coordination, they can communicate more effectively for three rea-

sons:

1. They will not waste time discussing alternatives that will prove to be unproductive.

2. They will not waste time negotiating over two workable alternatives.

3. In some cases, they can eliminate communication entirely.

Unfortunately, recalled procedures will only be effective if agents retrieve them in the right cir-

cumstances; in this paper, organizing memory around expectations about other agents and surface

features of the environment propagates “compatible viewpoints” on which past activities to recall.

Nevertheless, acting from past experience does not guarantee that agents will coordinate more

efficiently, regardless of how memory is organized. First of all, the coordination problems may not

have enough regularity. Second, agents will sometimes assess the same situation in incompatible

manners. This reflects both differences in experience between agents and the open-endedness of
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interpretation in general. In general, global difficulties can arise when individuals use local criteria

to determine the best case to retrieve [29]. In this paper, the agents discover, and redress, such

mismatches during communication.

Figure 6 presents the two highest level algorithms involving acquiring and using coordinated

procedures. As shown by UPDATECPCB, an individual agent updates her casebase of coordi-

nated procedures in two steps, IDENTIFYCOORDINATEDPROCEDURES and STORECOORDINAT-

EDPROCEDURE, each of which are the subject of a subsection. The last subsection talks about

RETRIEVEFROMCPCB, which provides the preferred return value of an agent’s planning routine,

simply called PLAN. (If planning time is not a concern, the agent can compute both plans and

select the better one.) Before getting into the technical details, the first subsection outlines how an

agent can learn a novel procedure.

UPDATECPCB ����������� �
	 ����
������������������ ���
forall ��� �� "!#��� � �$ ��%��& �%' in IDENTIFYCOORDINATEDPROCEDURES �������(��� �
	 �(��
)�%����� �
�*�+���-, STORECOORDINATEDPROCEDURE � � �. /!#��� � �$ ��%�/& � �����+�*� �

PLAN �0 ��%�/& � � � � � � �1�����+�*� �2�3 &4�/�#, RETRIEVEFROMCPCB �0 ��%�/& � � � � � � �1�����+�*� �
if 3 &4�"� = nil

return PLANFROMSCRATCH �0 ��%��& � � � � � � � �
else return 3 &4�/�

Figure 6: High-level algorithms for learning and generating plans.

4.1.1 Example of a learned coordinated procedure

The simplest plan that lifters learn that their first-principles planner does not construct is to load

a box onto a hand-truck and later unload it and load it onto a truck at the behest of a hand-truck

operator. This is not generated from first-principles when the lifters do not have built-in knowledge

of the actions available to the hand-truck operator. This coordinated procedure can be learned from

the following snippet of activity involving a medium-sized box.

First, a high-level description:

1. Hand-truck operator HTO asks lifter L1 to get box MBOX3 onto hand-truck HANDTR2.

L1 agrees and does so via lifting and loading the box. L1 next fails in an attempt to lift large

box LBOX2 by herself, spends a tick in observation since she has no plan, and lifts small

box SBOX5 while HTO tilts, pushes to the street, and stands up HANDTR2.

2. HTO asks L1 to get MBOX3 onto truck TRUCK. L1 agrees, puts SBOX5 back down, moves

to the street, unloads the box from the hand-truck and then loads it onto the truck.
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L1 records her behavior internally at each tick, including information about that tick’s active goals,

cooperation agreements, state of the world, attempted action, reason for attempting the action, and

result of the attempt. Only the gist of these internal structures is shown in the following listing of

the relevant portion of L1’s execution trace:

<agreed to achieve (ON MBOX3 HANDTR2) for HTO>

<executed <LIFT MBOX3>>

<executed <LOAD MBOX3 HANDTR2>>

<failed to <LIFT LBOX2>>

<observed>

<executed <LIFT SBOX5>>

<agreed to achieve (ON MBOX3 TRUCK1) for HTO>

<executed <PUT-DOWN SBOX5>>

<executed <MOVE STREET>>

<executed <UNLOAD MBOX3 HANDTR2>>
<executed <LOAD MBOX3 TRUCK1>>

This trace is “cleaned” by removing the failed primitive action and the time spent in observation.

Then the trace is segmented into groups of actions that are related by the goals toward which they

contribute. For the medium sized box, the trace segment is:

<agreed to achieve (ON MBOX3 HANDTR2) for HTO>

<executed (LIFT MBOX3>>

<executed (LOAD MBOX3 HANDTR2>>

<agreed to achieve (ON MBOX3 TRUCK1) for HTO>

<executed (MOVE STREET>>

<executed (UNLOAD MBOX3 HANDTR2>>
<executed (LOAD MBOX3 TRUCK1>>

Summarization of this grouping then removes any action that is planner-reconstructible:

<agreed to achieve (ON MBOX3 HANDTR2) for HTO>

<executed (LOAD MBOX3 HANDTR2>>

<agreed to achieve (ON MBOX3 TRUCK1) for HTO>
<executed (LOAD MBOX3 TRUCK1>>

Next, each past agreement is converted into a second-order expectation that represents that the lifter

expects to be asked for help again in the future. Finally, to prepare this group of actions for retrieval

in the future, literals such as MBOX3 must be replaced by newly generated variables. Variables are

typed and are usually given a machine generated label such as ?T1524; for readability, the variable

label has been replaced with the type. The procedure stored in memory is:

<EXPECT ?AGENT (EXPECT L1 (ON ?BOX ?HANDTR))>

<LOAD ?BOX ?HANDTR>

<EXPECT ?AGENT (EXPECT L1 (ON ?BOX ?TRUCK))>
<LOAD ?BOX ?TRUCK>
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4.1.2 Identifying coordinated procedures

The first half of updating the memory of coordinated procedures is to reflect upon the activity that

just ended in order to identify sets of actions that collectively accomplished a useful purpose. A

key part of this process in dynamic multi-agent environments is to remove inefficiencies in order

to prevent reifying sub-optimal solutions to coordination problems. Figure 7 presents pseudo-code

describing the procedure IDENTIFYCOORDINATEDPROCEDURES; the basic idea behind CLEAN

and SEGMENT will be given before delving into the details of REMOVEINEFFICIENCIES.

IDENTIFYCOORDINATEDPROCEDURES ����������� �
	 ����
�������� �2�
�.&����/��
����/��� , CLEAN ������� ��� � 	 ����
����/��� �
�*� � , LIST � �
forall � �.&4� �"� � �. "!#��� � �$ ��%��& ��' in SEGMENT �4�.&����/��
������.� �
� �. /!#��� � , REMOVEINEFFICIENCIES �4�.&����/� � �. "!#��� � �$ ����& � �
�*� � , PUSH � ��� �. "!#��� � �$ ����& ��' ���*� � �

return ��� �

Figure 7: Algorithm to identify coordinated procedures.

CLEAN removes patently unproductive behavior from execution traces to simplify further anal-

ysis. Failed primitive actions, refused requests, and time spent observing constitute the bulk of the

trace entries removed during cleaning. The cleaned trace is next restructured to facilitate the learn-

ing steps that follow, which rely upon being given a context of a set of goals being achieved and

the actions that contributed to achieving the goals. SEGMENT provides this context by identifying

sequences of actions that are logically grouped together.

Currently, two logical relations are used to identify segments: all actions that accomplish the

same goal (called “goal-groupings”) and all actions that occur during a time interval (called “time-

groupings”). Since the agents are goal-directed, only time-groupings that subsume goal-groupings

are included. A possibility for future work is to group together actions that took place in the same

location.

Execution trace segments contain inefficient solutions to coordination problems when activity

unfolds in ways that were not anticipated by the agent. REMOVEINEFFICIENCIES is a crucial

part of the process to learn coordinated procedures since it prevents reifying poor solutions to

coordination problems. For example, if a lifter loads and unloads the same box from the same

hand-truck multiple times at the same location (due to unexpected runtime failures or changes in

intentions), the lifter will boil that down to loading the box onto the hand-truck just once.

16



Analyzing trace segments is more difficult than analyzing the output of a first principles plan-

ner. One difficulty is that actions can be effective (or ineffective) for reasons other than their

intended effects.8 Another difficulty is that trace segments may be incomplete from a planning

sense.9 The net impact of these two difficulties is that the identification of inefficient actions may

depend on predicates whose truth values do not change as a result of any of the actions.10

Removing inefficiencies occurs in two passes. In the first pass, inefficient primitive actions are

removed from the execution trace segment; in the second, superfluous coordination mechanisms

are removed. Inefficient primitive actions, from the standpoint of this work, are defined as sets of

actions whose cumulative effect makes no relevant changes to the state of the world.

Figure 8 gives pseudo-code for determining if a sequence of primitive actions � � ������� � � � is inef-

ficient. ISINEFFICIENTSEQUENCE builds upon methods for determining the set of relevant literals

of an action and the set of predicates that are relevant to a set of literals. The default definition for

RELEVANTLITERALS
� � 
 is the set of non-location role-fillers for � (location literals are removed

since co-presence is not, by itself, typically meaningful). RELEVANTPREDICATES
���	��
���
������ � ��
���
�� 


is the transitive closure of the union of all predicates that are true in ��
���
�� and whose arguments

intersect ����
���
������ . The transitive closure is needed because when a relevant predicate is added to

the union, its non-location arguments are added to the set of relevant literals.

ISINEFFICIENTSEQUENCE � ��� � �������(� � � ' ���
& 	 � ������& � ,�� � RELEVANTLITERALS � � � �
	 � 	 �
	 ��&4���1��� � , RELEVANTPREDICATES �4& 	 � ������& � � state immediately before � � � 	 � ��&4���1��� � , RELEVANTPREDICATES �4& 	 � �����/& � � state after before � � �
if
	 � 	 � 	 ��& �*���!� � =

 	 � �/&4���1��� �
return true

else return false

Figure 8: Algorithm to determine if a sequence of primitive actions is inefficient.

Any primitive actions in the agent’s segment that are part of an inefficient sequence will be

removed from the segment. Exhaustive search of the possible inefficient action sequences requires

checking " � subsets in the worst case, so it is impractical for traces with many actions. The

implemented system tests contiguous pairs, which only requires # ��$ 
 checks.

8For example, a lifter may load a box onto a hand-truck in order to free up her hands, but it serendipitously enables
the hand-truck operator to get the box out to the street.

9Consider a segment to move a single box onto the truck involving loading the box onto, and later unloading it
from, a hand-truck. If the lifter arrived at the street by carrying some other box, then the CARRY is not part of this
segment (but may be part of a segment that achieves both boxes). Thus, the LOAD and the UNLOAD of the hand-truck
are not separated by a MOVE as they would be if the sequence of actions were generated in a single planning session.

10The fact that the LOAD and UNLOAD take place in different locations is the only relevant difference between
the pair of actions in the previous footnote and a similar pair that truly did reverse each other. Thus, in the absence
of being able to both observe and reason about the hand-truck operator’s actions, the lifter must compare the two
locations, even though neither the LOAD nor the UNLOAD change the location of any items.
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Superfluous coordination mechanisms (including communication) are identified based on the

primitive actions still in the segment after the first pass. Superfluous mechanisms about joint action

are easy to identify because of the close coupling that exists between the expectation and the joint

action itself. If a related joint action (i.e., about the same coordination point) does not appear in

the segment after the coordination mechanism, the mechanism is removed. If there are multiple

mechanisms related to and preceding the same joint action, only the last mechanism is kept.

Determining whether a coordination mechanism about a request for service is superfluous is

more complex. The basic idea is that the requestee must achieve the request and that the achieve-

ment of the request must enable future action by the requester. If it is a request for the agent, then

there must exist an action in the segment that achieved the request and occurred after the request

was made, and the request must have been the first one the agent received during this attempt at

achieving the request. If it is a request made by the agent, then this request must have been the

first one the agent made since the request was last true and, for sub-goal requests, there must be

an action remaining in the agent’s segment that started during the next time period in which the

request was true.

In a dynamic multi-agent setting, removing all inefficient actions requires that an agent can

infer when another agent (or an external force) undid the effect of some of her actions. However,

in many domains this is not possible — an agent may not even have an accurate model of her

own actions much less of other agents; also, she may not be aware of (i.e. have observed or been

told about) all of the actions of other agents. Consequently, some inefficient actions may not be

removed.

4.1.3 Adding coordinated procedures to the casebase

The second procedure called when updating the casebase of coordinated procedures is STORE-

COORDINATEDPROCEDURE, which converts an execution trace segment into a entry in memory.

This conversion involves summarizing and optimizing the coordinated procedure, and determin-

ing appropriate storage indices. Indexing at storage time is primarily based on the top-level goals

being achieved and expected coordination points (requests); indexing based on expected requests

facilitates retrieving coordinated procedures during conversations.

A casebase entry contains two pieces of information: a context and a coordinated procedure.

The stored context for a casebase entry is a set containing one record for each variable that must

be bound in order to instantiate the goals, expected requests, and procedure. Each record includes

the role the variable played in the coordinated procedure (i.e., the variables are typed), the observ-

able features of the past bound values, and a set of relevant predicates. Relevant predicates are

determined from the indexing state in the same manner as REMOVEINEFFICIENCIES.
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Before presenting pseudo-code for STORECOORDINATEDPROCEDURE and getting into the

details of how coordinated procedures are indexed in memory, we will describe the summarization

and optimization criteria. The combined effect of these criteria is to remove an action if it is either

planner-reconstructible or arguably unnecessary for agents acting from shared experience. The

motivation for removing actions at this stage is to simplify the stored procedure and increase the

frequency with which the retrieval context is generalized.

An important characteristic of summarization is that it keeps (1) coordination mechanisms

for agreements and (2) actions that precede a shift between goals. The summarization principle

is to remove steps that are in the planning support of another action in the coordinated procedure.

Summarization does not remove any actions that cannot be regenerated by the planner in the correct

position relative to the actions that are kept. Removing reconstructible actions can be effective

since the particular time at which subordinate goals were achieved at runtime may be misleading

and it makes the stored plan more easily adapted in the future (at the cost of regenerating the

original action if it is needed again). Requests for joint action require special handling to ensure

that the initiator only keeps the joint action and the assistant only remembers to expect a request.

The two optimization criteria are based on the (optimistic) belief that requests for service can

be coordinated by implicit agreement when agents are acting from learned procedures.11 To that

end, agreements to satisfy requests for service are removed rather than converted into expectations.

This criterion allows, for example, a lifter to learn to load the hand-truck without being explicitly

told to do so. The second criterion is described below.

Figure 9 contains pseudo-code for STORECOORDINATEDPROCEDURE, which determines stor-

age indices at the same time that the summarization and optimization criteria are applied (these

criteria are encapsulated into the KEEP function). The indices for a new learned procedure are

determined in a “roll-back” fashion. When an action is removed from the trace, the time at which

it started is added to a list of indexing times; if it was an agreement, it is added to a list of expected

requests that are also used for indexing. If an action is kept, these indexing lists are reset. Thus, a

side effect of removing actions is that the procedure may be indexed differently in memory.

After passing over the trace and keeping the essential steps, the coordinated procedure and in-

dexing information are passed into ADDCASEBASEENTRY. ADDCASEBASEENTRY is a complex

procedure, which makes representational changes to the procedure and maintains the structure of

the underlying casebase. Only two pieces of that procedure merit mention. The principle repre-

sentational changes of ADDCASEBASEENTRY are to convert each agreement into an expectation

for a request to be made and to consistently replace domain literals in the memory (including the

procedure and the indexing and contextual information) by newly created variables. When repre-

sentational changes are being made, the second optimization criterion — dual to the one described

11The criteria do not relate to requests for joint action, which require more fine-grained coordination.
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STORECOORDINATEDPROCEDURE � � �. /!#��� � �$ ��%�/& � �����+�*� � �3 ���%�����"� �1�), LIST � �� 	 !#� � , LIST � �
��� 3 � � � �����*������� � � � , LIST � �
forall � � � 3 in REVERSE � � �. "!#��� � �

if KEEP � � � � 3 � 3 ���%�����"� �1� �3 �������!�1� �1� , PUSH � � � � 3 � 3 ���%�����"� �1� ��
	 !#� � , LIST � �
��� 3 ��� � �!���*���(��� � � � , LIST � �� 	 !#� � , PUSH � STARTTIME � � � � 3 ��� � 	 !#� � �

if � � � 3 is an agreement
��� 3 ��� � �!���*���(��� � � � , PUSH � � � � 3 � ��� 3 ��� � �!���*���(��� � � � �

if HEAD � 3 ���%�����"� �1� � is not a member of ��� 3 ��� � �!���*���(��� � � �
�*�+���-, ADDCASEBASEENTRY � 3 ���%�.�!�1� ���1�$ ��%� & � � null � �
	 !#� � �.���+�*� �

forall � in ��� 3 � � � �!���*������� � � �
��
 	 !#� � , REMOVELATERTHAN � � 	 !#� � � STARTTIME � �	� �
�*�+���-, ADDCASEBASEENTRY � 3 ���%�.�!�1� ���1�$ ��%� & � � ��� �(
 	 !#� � �����+�*� �

return �������

Figure 9: Algorithm to store a coordinated procedure, possibly under multiple indices.

above — is applied. This criterion is to mark expectations that led an agent to make a request

for service so that the agent will prefer to coordinate the expectation in the learned procedure

by implicit agreement. This allows the hand-truck operator to learn to expect a lifter to load the

hand-truck without being asked to do so.

In terms of the organization of memory, a key division is that STORECOORDINATEDPROCE-

DURE only computes the times that correspond to states of the world that should be used as in-

dexing states; ADDCASEBASEENTRY converts those states into an entry’s contextual information.

A casebase entry is generalized when a new case is indexed under the same goals and expected

requests, the new and old procedures contain the same sequence of action types, and a one-to-

one mapping can be constructed between the two contexts.12 When generalizing previous context

records, the list of relevant predicates shrinks to include only predicates present in both the new

and the old case, and the range of seen values for each observable feature expands to include both

the new and the old case.

4.1.4 Retrieving coordinated procedures from the casebase

When an agent is planning (either to achieve an unmet top-level goal or to accommodate a request

from another agent), the agent consults her casebase of coordinated procedures. The basic idea

is that the agent retrieves the most time-efficient procedure whose goals unifies with the current

12On average, procedures are indexed under eight different contexts when the agent is experienced.
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planning goal, whose relevant literals can be filled, and whose stored context is sufficiently similar

to the current setting.13 Figure 10 gives pseudo-code for RETRIEVEFROMCPCB, the routine that

implements retrieval.

RETRIEVEFROMCPCB �0 ��%��& � � � � � � �1�����+�*� ���� 	  � � 	 ! 	 &4�"� 	 ��� ,������3 &4�/� � , LIST � �
forall � �.� � ��� ! � 3 �%' in MATCHABLEGOALS �0 ��%��& � ���*�+��� �3 ���!� 	 �.� � � � , LIST � �

forall & 	 � �����/& �*� ����� � in CONTEXT �4��� � � �
! � 3 � , MATCHFEATURES � OBSERVABLEFEATURES �4& 	 � ������& �*� ���(� ����� ! � 3 � � � � � � � �
if ! � 3 � = nil then consider next case3 �1��� 	 ��� � � � , 3 �1��� 	 �.� � � � � RELEVANTPREDICATES �4& 	 � �����/& �*� ����� � �

��� 	 ! 	 &4�/� 	 ��� �	�.� � ��
 � 3 ' , COMPUTEMOSTSIMILAR � 3 ���!� 	 �.� � � � � ! � 3 � � � � � � � �
if � 	 ! 	 &4�"� 	 ���
� � 	  � � 	 ! 	 & �/� 	 ���3 &4�"�#, APPLYMAP � PROCEDURE �4�.� � � ���	�.� � ��
 � 3 �3 &4�"�#, ADAPTPLAN � 3 &4�"� � � � � � � �

if ! � 3 � = nil then consider next case
if � 	 ! 	 &4�/� 	 ���
� � 	  � � 	 ! 	 &4�"� 	 ���� 	  � � 	 ! 	 & �/� 	 ��� , � 	 ! 	 &4�"� 	 ���3 &4�"� � , LIST � �3 &4�"� � , PUSH � 3 & �/� � 3 &4�/� � �

if 3 &4�"� � is empty
return nil

else return PREFERREDPLAN � 3 &4�"� � �
Figure 10: Algorithm to retrieve casebase entries from memory.

The first step is to retrieve all entries whose index can be unified with the current planning goal,

which may be a request. A byproduct of this unification performed by MATCHABLEGOALS is that

each returned case will be associated with a set of maps that indicates possible ways to (partially)

instantiate the data in the case.

For each matching casebase entry, the contextual information is then checked to see if each

relevant literal has at least one match in the current setting based on observable features.14 After

each check, the set of maps associated with the case is updated by MATCHFEATURES to include

the possible mappings for each literal. Next, COMPUTEMOSTSIMILAR determines which map

produces a context that is most similar to the current surroundings. If the resulting similarity score

meets or exceeds the highest similarity (that starts at an arbitrary threshold of 0.50), the coordinated

13This occurs approximately 20% of the time when the agent is experienced.
14A conservative, domain-independent criterion for matching is currently used: all of the observable features for a

filler from the current setting must fall in the range of previously seen values for the literal.
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procedure stored in the entry is checked to see if it can be adapted to the current state of the world

after applying the map. If so, the current highest similarity is updated.

Finally, an entry is selected from the entries with maximal similarity by PREFERREDPLAN. In

principle, this selection can be made by the number of storages for the entry, expected discounted

reward, or any other preference criteria that are well-suited to the domain. Currently, plans that

have the highest expected discounted reward are preferred and any remaining ties are broken ran-

domly.

The implemented retrieval method incorporates two biases that are not shown in the pseudo-

code. The first is that MATCHABLEGOALS prefers casebase entries that achieve more unmet top-

level goals. In most cases, this bias merely speeds retrieval (since fewer cases are identified as

matches) rather than changes the return value (since the evaluation of the plan to achieve more

goals is likely to be higher). The second is that MATCHFEATURES prefers the original filler for

a literal over other possible fillers. This is mainly relevant for agent literals since the agent that

assisted in the past is frequently present in the current setting.

In the experiments conducted so far, the number of entries in the casebase was never large

enough to make storage or retrieval a bottleneck (the sum of the sizes of the casebases barely sur-

passed 100). In general, though, a more refined indexing scheme, such as indexing by differences

[21, 22] or based upon the footprint metric [38] or based upon causal analysis [16] might be needed

to keep retrieval times manageable. Further refinements such as distinguishing between short and

long term memory or selectively “forgetting” past cases [34] may also be fruitful. Another defi-

ciency in the current implementation is that the entries are not organized in a way that facilitates

retrieving constituent parts of the coordinated procedure, cf. multicases [40] or snippets [20].

4.2 Learning operator probabilities

Agents acquire some coordination knowledge independently of learning coordinated procedures —

agents learn more accurate estimates of the probability of success of possible actions. Agents use

probabilities when planning from scratch, when deciding whether to cooperate, and when adapting

coordinated procedures to match the current problem setting. The accuracy of the probability

estimates, therefore, can have a large impact on how efficiently agents coordinate.

To get a feel for how accurate probability estimates can help an agent coordinate more effi-

ciently, consider a common scenario a lifter faces. A lifter can lift some boxes alone, but not all

of them. If a lifter can lift the box alone, it is more likely to be productive to do so because they

do not have to spend time asking for assistance (and there is no guarantee the assistance will be

given). On the other hand, if there is little chance that the lifter can handle the box on her own, it is

a waste of time (and energy) to make the attempt. Ideally, individuals should be able to recognize

which of these two possibilities is more likely and plan accordingly.
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Initially, probabilities are set to 50%. This steers an inexperienced lifter to try to lift boxes

alone because a plan to do so will be shorter (because there is no communication needed) and thus

have a higher expected discounted reward. So, at the beginning of a problem, lifter L1 would try

to pick up a large box LBOX1 by herself. L1 would fail; the next time she wants to lift LBOX1,

L1 will decide to ask for the help of another agent. This decision is based upon L1’s experience

interacting with that particular box. However, L1’s experience interacting with a particular box

will not prevent her from attempting (and failing) to lift other large boxes alone.

Operator probability trees constitute the resource that enables an agent to increase the accuracy

of her probability estimates by generalizing past interactions. Operator probability trees are based

upon COBWEB [11] trees; slight changes to the classification algorithm are needed to output an

estimate for successfully executing an action. In this paper, successfully executing an action means

that after the attempt has been completed, all of the anticipated effects have occurred.

The successes or failure of an attempted action is stored in a COBWEB tree, along with all of

the observable features of the various role fillers for the action. Actions might fail for features that

are not explicitly represented (q.v. the qualification problem [27]) and COBWEB can handle such

noisy data. Also, COBWEB trees can be updated incrementally, which allows the agents to learn

during the course of their activity. The probability of success for a yet-to-be-attempted action is

based on the similarity of the action to the node returned by COBWEB classification as well as the

data stored in that node [12]. Throughout this paper, the phrase “learning operator probabilities”

means all agents are maintaining operator probability trees and using them to estimate operator

probabilities.

Returning to the MOVERS-WORLD scenario, if the observable characteristics (e.g., height,

width, depth, material) of another box LBOX2 are identical to those of LBOX1, L1 will not attempt

to lift LBOX2 alone. If the features are not identical and there are other experiences stored in the

tree, L1’s behavior depends on which experience the classification algorithm considers the best

match with the current action (as well as how similar that experience is).

Operator probabilities could be maintained by a different machine learning technique than

COBWEB. The features of past attempted actions, together with their outcome, form the training

set; a potential future action is assigned a probability that the attribute “success” will be true given

the action’s other features. From this viewpoint, another on-line learning technique that can be

used for prediction and is tolerant of noise could be substituted for COBWEB. An area of future

research is to generalize the predicted attribute to predict a member of a set of possible operator

effects. This would support actions that have conditional effects. In the extreme, it might be

possible to learn both the members that make up the set and the probabilities associated with each

member.
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5 Results and analysis

This paper claims that groups of autonomous agents can solve coordination problems more effi-

ciently when individuals independently learn from past experiences. This section supports that

claim with an example of a learned procedure that is more efficient than first-principles plans

and with rigorous empirical studies for an implemented test-bed. The empirical results demon-

strate that learning substantially benefits groups whose members initially have minimal knowledge

about how to solve coordination problems. Additional results show that groups with extensive ini-

tial knowledge also significantly improve their performance by learning coordinated procedures.

5.1 Learning more efficient procedures

This subsection shows how learning from an execution trace makes it possible to learn plans that

are more efficient that those of her first-principles planner (or a traditional second-order planner

based on it). In this example, lifter L2 learns to interleave working with the hand-truck with

carrying a box to the street on her own. This is beyond the scope of the baseline planner when L2

is not designed with knowledge of the actions available to the hand-truck operator. The description

of the activity given below has been organized to focus on L2’s plans and actions.

1. L2 creates a first-principles plan to get XLBOX1 onto the truck: to lift, carry and load the

box jointly with L1. L1 agrees to lift the box together and they do so. L1 then agrees to carry

the box to the street. However, XLBOX1 is too large to carry, even jointly, and the action

(and hence rest of the plan) fails.

2. L2 creates a plan to get SBOX4 onto the truck. The plan consists of putting down XLBOX1

with L1’s help and then lifting, carrying and loading SBOX4 onto the truck by herself. L2

is delayed in asking for L1’s assistance because HTO calls L1 first with a request to put

XLBOX1 onto HANDTR2. L1 agrees to help HTO.

3. When L2 does ask L1 to help achieve HANDEMPTY via putting XLBOX1 down together,

L1 replies that she would rather load the box together onto the hand-truck. L2’s planner

adapts her current plan by replacing the PUT-DOWN-TOGETHER with the appropriate

LOAD-TOGETHER. The agents then load XLBOX1 onto the hand-truck.

L2 continues on with her plan and loads SBOX4 onto the truck. Meanwhile, HTO has pushed

the hand-truck to the street and L1 has agreed to get XLBOX1 onto the truck.

4. L2 constructs a plan to get large box LBOX2 onto the truck and moves back to ROOM1.
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5. L2 is interrupted before attempting to lift LBOX2 by a request from L1 to help unload

XLBOX1 from the hand-truck. L2 constructs the plan of moving to the street and then

unloading XLBOX1. The agents do so.

6. L1 asks L2 to load XLBOX1 onto the truck and they do.

The sequence of actions L2 undertakes corresponds to six different calls to the baseline planner.

Nonetheless, L2 will store a single coordinated procedure with only three actions in it (showing

the original literals instead of new variables for clarity):

<LOAD-TOGETHER XLBOX1 HANDTR2>

<LOAD SBOX4 TRUCK1>
<EXPECT L1 (EXPECT L2 (LOAD-TOGETHER XLBOX1 TRUCK1))>

In this run, L1 also learned a procedure to interleave two goals since L1 carried MBOX0 to the truck

while L2 was handling SBOX4. Figure 11 shows a summary of how L1’s behavior is converted

into procedures in memory. In this figure, L1 is creating three casebase entries; two of them will be

indexed with an expected request, one will not. The performance that led to learning this procedure

was exceptional (33% fewer ticks than average) and was chosen for illustrative purposes; execution

traces are normally much more chaotic.
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Time Action Outcome

1 <agreed to <LIFT-TOGETHER XLBOX1> with L2> Summarized
21 <executed <LIFT-TOGETHER XLBOX1>> Summarized
51 <agreed to <CARRY-TOGETHER XLBOX1 STREET1> with L2> Cleaned
71 <failed to <CARRY-TOGETHER XLBOX1 STREET1>> Cleaned
91 <agreed to (ON XLBOX1 HANDTR3) for HTO> Optimized

105 <L2 agreed to <LOAD-TOGETHER XLBOX1 HANDTR3>> Summarized
126 <executed <LOAD-TOGETHER XLBOX1 HANDTR3>> Kept
161 <executed <LIFT MBOX0>> Summarized
191 <executed <CARRY MBOX0 STREET1>> Summarized
231 <executed <LOAD MBOX0 TRUCK3>> Kept
266 <agreed to (ON XLBOX1 TRUCK3) for HTO> Optimized
279 <L2 agreed to <UNLOAD-TOGETHER XLBOX1 HANDTR3>> Summarized
300 <executed <UNLOAD-TOGETHER XLBOX1 HANDTR3>> Summarized
335 <L2 agreed to <LOAD-TOGETHER XLBOX1 TRUCK3>> Summarized
353 <executed <LOAD-TOGETHER XLBOX1 TRUCK3>> Kept

Casebase MEM75
Procedure: <LOAD-TOGETHER ?L1-177 ?L1-174>

<LOAD ?L1-175 ?L1-176>
<LOAD-TOGETHER ?L1-177 ?L1-176>

Top-level goals: ((ON ?L1-177 ?L1-176)(ON ?L1-175 ?L1-176))
Request: NIL
State indices based on ticks 1, 21, 91, 105, 126

Casebase MEM76 derived from MEM75
Request: ((LIFT-TOGETHER ?L1-177)) by ?L1-180
State indices based on tick 1

Casebase MEM77 derived from MEM75
Request: ((ON ?L1-177 ?L1-174)) by ?L1-173
State indices based on ticks 1, 21, 91

Figure 11: Sample memories

5.2 Empirical results

The testbed system solves sequences of MOVERS-WORLD problems. Problems are constructed

by randomly selecting subsets from the pool of permanent MOVERS-WORLD objects (agents,

hand-trucks, and trucks) that will be active for that problem. Then a random group of boxes and

locations is constructed and a list of goals involving them is generated. An area for future work is

to investigate the performance of the group if agents in the group change over time or some agents

learn at difference rates than others.

Experiments in the testbed take into account the possible influence of sampling bias and or-

dering effects. A test suite was created so that different runs of the system are solving problems

26



of equal difficulty. The test suite was composed of 60 problems; the goal of each problem was to

move all boxes to the truck, where the number of boxes was uniformly distributed between 3 and

5. Each problem included exactly one extra-large box (whose observable features vary). To limit

the influence of ordering effects, each learning curve shown is the average of running the system

on ten predetermined groups of sequences. (It is not feasible to determine learning curves by run-

ning the system on all possible permutations of the test problems.) Each group is composed of 60

sequences such that each of the test problems occurs once as the first problem-solving episode of

some sequence in the group, once as the second of a different sequence in the group, et cetera. In

sum, each datum point reported is the average of 600 trials.15

There are many ways to measure the runtime performance of the agent community, such as the

number of primitive actions attempted and the number conversations that occur. The best overall

measure of community effort, however, is the number of ticks of a simulated clock that transpire

during the course of the community solving the problem. This measure includes both action and

communication effort, in addition to time when the agents are idle for one reason or another.
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Figure 12: Overall effort Figure 13: Communicative effort

Figure 12 shows that learning reduces the overall amount of effort, measured in ticks, required

by the community to solve problems. Learning curves are shown for when agents are learning

just coordinated procedures (“CP”), just operator probabilities (“OP”), or both (“CP+OP”). Also,

a baseline (“No Learning”) curve is included for comparison. On curves for runs where the agents

learned coordinated procedures, 99% confidence intervals are given.

Both OP and CP lead to statistically significant improvements on their own. OP shows signifi-

cant intra-problem learning, reducing the average number of ticks for solving the first problem of

a sequence from 1128.8 to 1038.1. This number continues to decrease until it levels off at 846.3,

15Random seeds and decisions are recorded for each of these 600 trials and re-used across experiments to minimize
the impact of randomness.
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but learning after the fifth problem is not significant with 99% confidence. Initially, the CP curve

falls more slowly, but it eventually undercuts the OP curve beginning with the eighth episode. The

combined effect of learning coordinated procedures and operator probabilities has substantially

more impact than either alone. After two problem problem-solving episodes, the community out-

performs the best performance at any point in the sequence for either CP or OP. Improvement is

significant until the seventh episode.

Figure 13 shows that acting from past experience in MOVERS-WORLD reduces communica-

tion. The average number of conversations required to solve these problems without learning was

24.6. Learning coordinated procedures leads to statistically significant improvement; the average

number of conversations drops fairly steadily, ending at 14.4, a 41.5% improvement over the base-

line system. OP is not as effective in reducing communication, dipping below 18 talks per problem

for only the tenth problem. As with the number of ticks, the number of dialogs is much lower when

the agents are learning both learning structures. By the third problem, fewer conversations occur

(13.8) than at any time in the sequence for either OP or CP. The final value of 10.0 is a reduction

of 14.6 conversations, slightly less than the combined reductions of OP (6.8) and CP (10.2).

Learning leads to similar statistical improvement in the number of ticks spent conversing, the

number of attempted actions, and the number of ticks spent acting. Furthermore, these results hold

across a wide spectrum of possible goal-selection strategies, cooperation strategies, and commu-

nication costs [12]. An analysis of how learning improves runtime performance identifies these

advantages of learning coordinated procedures [12]:

1. Recalling shared past experience leads to compatible viewpoints on how to solve problems.

2. Optimizations lead to more efficient coordination.

3. Coordinated procedures implicitly acquire additional planning knowledge (e.g., lifters learn

plans involving the hand-truck).

4. Learned goal-selection, coordination, and planning knowledge are more useful as a unit,

when retrieved from the casebase, than when accessed separately.

Compatible viewpoints improve group performance by improving the quality of agents’ goal se-

lection and simplifying their decisions about whether to cooperate. Having compatible viewpoints

means more than just working on the same goals at the same time — agents who are concurrently

working on a shared goal must approach the goal in related ways. Determining whether agents

have compatible viewpoints is determined during conversations; the listener is considered to have

a compatible viewpoint if the listener’s plan already includes a coordination mechanism related to

the request.
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When agents have compatible viewpoints, cooperation decisions require less reasoning. Many

times a decision is trivial, since the listener was planning on helping anyway. In most other cases,

the response of the listener is still a logical consequence of the relationship between the request

and her plan. In the remaining cases, an agent is faced with a “hard” choice: she constructs a

plan to satisfy the request and evaluates whether this plan is more likely to be productive than her

current plan (by considering expected discounted reward).

Figure 14 measures how frequently two conversing agents have compatible viewpoints. In the

first problem-solving episode, the listener has a related plan just 25.4% of the time. By the last

problem-solving episode, neither learning just operator probabilities nor learning just coordinated

procedures dramatically increases the frequency that agents have compatible viewpoints. However,

the synergy between the two types of learning is clearly evident since the percentage of time that

the listener has a compatible plan rises to 65.8%.
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Figure 14: Related requests Figure 15: Requests avoided

Optimized procedures may contain expectations that are coordinated by implicit agreement.

An implicit agreement occurs when an agent would normally explicitly make a request, but, based

on past experience, will instead prefer to avoid communication. Measuring when communication

is avoided involves comparing satisfied implicit agreements ( ��� � ) and explicit agreements made

during communication ( � � ). The percentage of conversations avoided is ��� ��� � ��� ����� � 
 since

each time an implicit agreement is silently satisfied, the agents have, in effect, had a conversation

in which the request was made and agreed-to. Figure 15 shows that the percentage of explicit

conversations that were avoided rises steadily, exceeding 16% by the last problem-solving episode.

The disadvantage of coordinating by implicit agreement, which is not shown in a figure, is

that sometimes the other agent will not be working from a compatible plan and the agent has to

make an explicit request anyway. In this case, the period of time spent waiting was completely for

naught. This occurred less than 0.8 times per problem-solving episode, on average, for all of the

runs reported in this paper.
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5.3 The benefits of coordinated procedures for experts

The results presented so far show that agents with minimal initial knowledge about how to solve

coordination problems can benefit greatly from learning coordinated procedures. This subsection

will show that learning coordinated procedures significantly improves community performance

even for agents that are engineered with more than minimal knowledge. In order to address this

issue, the experiments in this subsection isolate the advantages of learning coordinated procedures

from the advantages of having accurate probability estimates. To this end, agents learn operator

probabilities in all of the experiments. Thus, variations in the performance of the community in the

last episode for different runs of the system are due to the coordinated procedures learned and/or

the initial ability of agents to solve coordination problems.

Procedures Learned?
Built-in Ability No Yes

Minimal 846.3 623.5
Expert 687.4 594.1

Table 1: Comparison of the amount of community effort required for the tenth problem-solving
episode. Agents learn operator probabilities in all of these runs.

Table 1 presents a tabular summary of the results of four runs of the system. To compare these

numbers with the results in the previous subsection, “Minimal, Yes” in this table corresponds to

CP+OP and “Minimal, No” corresponds to OP. The initial performance of the community without

any learning is 1128.8. Agents with expert built-in coordination abilities have additional domain-

dependent coordination knowledge. Expert agents are built with planning knowledge of other

agents, coordinate all requests for service by implicit agreement, and use a hand-crafted heuristic

for goal selection. Expert knowledge is designed to avoid conversations more frequently and, when

discussion does occur, to have related requests more often.

The data in the “No” column of Table 1 indicate that improving the initial coordination abil-

ity of agents who do not learn coordinated procedures substantially reduces the number of ticks.

Scanning across each row shows that, regardless of the initial coordination ability of the agents,

learning basic coordinated procedures leads to significant reductions in the number of ticks.

The learning curves in Figure 16, plotted with their 99% confidence intervals, show the commu-

nity runtime effort for three runs. Comparing curves MY and EN reveals that learning coordinated

procedures is more effective than initial expertise by the second problem-solving episode. Another

interesting result, shown by the MN and EN curves, is that learning operator probabilities alone

does not overcome a disparity in the initial ability to solve coordination problems.
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Figure 16: Comparing runtime effort Figure 17: Comparing planner effort

Another significant advantage of learning coordinated procedures is in controlling the amount

of planner search. Figure 17 depicts planning effort, as measured by the average number of plan-

ning nodes expanded per call to the planner. The disparity between curves MN and EN provides

evidence that initial expertise comes with a price — the increased amount of planning information

can lead to a large increase in planner search. However, learning and acting from past experience

controls planner search so effectively that experts who learn coordinated procedures (curve EY)

expanded fewer planning nodes than agents with minimal initial knowledge who do not learn them

(curve MN). CPU time, which includes the time agents spend maintaining their casebases, is also

reduced significantly by learning coordinated procedures.

Overall, the results clearly demonstrate that learned coordinated procedures are an effective

resource for agents to better coordinate their runtime activities. Learning coordinated procedures

benefits agents regardless of the initial ability to solve coordination problems. There is leverage in

storing and retrieving plans based on the surface features of the environment, rather than having

access to similar information that is accessed at separate times. Finally, the techniques are very

effective in preventing increased planner search.

6 Discussion and related research

An alternative way to define a solution to a coordination problem might be to specify a set of

mental attitudes to be held by the group of agents. Three notable possibilities would be to say that

a group of agents has solved a coordination problem once the agents’ beliefs, desires, and intentions

satisfy the definitions of a shared plan [13], joint intentions [26], or a shared cooperative activity

[4]. This approach, however, would overlook the many sources of uncertainty that might prevent
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such a group of agents from actually solving coordination problems. Incomplete or inaccurate

domain models, incomplete or incorrect knowledge of the state of the world, exogenous events,

the introduction of new agents or the failure of current ones are some of the practical reasons that

mental attitudes alone cannot guarantee success. Coordination problems can only be solved by

acting.

The generalized partial global planning (GPGP) architecture [7] is an alternative framework

that supports the model of agent interactions studied in this paper. A partial global plan [10] is a

general structure for representing coordinated activity in terms of goals, actions, interactions, and

relationships. In the partial global planning architecture (PGP), agents rely on a meta-level orga-

nization that specifies the coordination roles of each agent in order to control how they exchange

and reason about their possibly different partial global plans. GPGP is a domain-independent coor-

dination technique that extends PGP by communicating more abstract information and separating

the process of coordination from individual planning. A key to GPGP is that coordination relation-

ships are abstractly defined, so coordination mechanisms can be invoked based on the detection of

certain features in the environment or task. Coordination mechanisms are tailored a priori to create

a fixed coordination strategy. Once created, the strategy is used across all problem instances in the

environment, all agents in the community have common knowledge of the coordination strategy,

and the agents exchange meta-level information throughout the activity to coordinate effectively.

In our work, agents do not exchange the meta-level information that forms the heart of the

GPGP “augmented goals”. Namely, agents do not communicate about the current projected result,

the physical resources needed, timing information, the capabilities of an agent, or any measures

of probability or certainty. Another differentiating feature is that our framework does not rely on

pre-determined high-quality coordination strategies; instead, agents can start with simple strategies

and learn more advanced ones that reflect what works in the environment.

COLLAGE [31] leverages case-based reasoning techniques to improve coordination in the

GPGP framework. COLLAGE builds upon the basic GPGP approach by allowing the agents to

tailor the coordination strategy for each problem, based on the results of training runs. There are

three key differences between this work and COLLAGE. First, COLLAGE learns to choose a sub-

set of the pre-defined coordination mechanisms rather than learning ways to coordinate that were

not pre-defined. Second, learning in COLLAGE happens during a separate training phase rather

than on-line. Finally, all agents select the same strategy because each agent communicates her

local viewpoint to all other agents to form a consistent global viewpoint, and each agent records

the same training data. In our work, learning is effective without a global viewpoint even when

local viewpoints differ or when agents have varying amounts of training.

Case-based reasoning has been used to change runtime behavior in other systems with mul-

tiple agents. In particular, Haynes & Sen [17] keep a record of past execution-time conflicts in
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a communication-free domain to supplement control strategies in order to reduce conflicts in the

future. Ohko, Hiraki, and Anzai [30] learn to allocate tasks better among a community communi-

cating via a contract net by storing the outcome of past bid and task announcements.

Coordinated procedures are culled primarily from execution traces. Others [5, 38, 25] have

argued that an agent should store planning histories in memory. However, reusing a plan deriva-

tion will not produce a sequence of actions to solve a similar problem better if the derivation was

deficient (due to the agent’s incomplete knowledge). On the other hand, execution traces encapsu-

late the history of both planned and unplanned agent interactions with the domain. Consequently,

procedures are learned that were not developed in a single (or multiple) planning histories.

Thus, storing coordinated procedures emphasizes learning from (unplanned) successes, whereas

previous approaches have emphasized learning from failures. For example, Hammond [15] fo-

cused on learning to anticipate and avoid problems through the explanation of past execution fail-

ures in a framework that is exclusively case-based. In that model, runtime failures are not repaired

at the time; instead, the explanation knowledge is stored so that plans generated later will execute

without failure.

In this paper, the casebase contains procedures that are outside the scope of plans that can be

generated using first-principles search control knowledge. Thus, one could say that the casebase

implicitly contains learned search control knowledge. However, the techniques presented in this

paper are not explanation-based learning (EBL) [28, 8]. As with reusing plan derivations, EBL

is traditionally geared toward planning efficiency rather than knowledge acquisition. While one

might imagine a variant of EBL that would change the output of the baseline planner based on

runtime experience, our techniques would be more general since we do not assume that there

is a known domain theory that can be operationalized. Suguwara & Lesser [36] present EBL

techniques to learn coordination rules based on past failures in order to select and prioritize future

diagnostic activities in a homogeneous multi-agent network monitoring system.

7 Conclusion

Solving coordination problems efficiently is a fundamental difficulty faced by groups of interacting

agents. The most basic hurdle to efficient coordination is when agents are not aware of their

common interests; another is overcoming a distribution of either execution ability or problem-

solving knowledge. Even when agents have common knowledge about goals and planning, there

may be ambiguity about the order on which to work on the goals. Finally, agents may have different

preferences among alternative solutions when there is uncertainty about the outcome of actions or

when agents have different beliefs about the world.
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Using the techniques presented in this paper, an agent learns from her experiences and the

group moves from satisficing solutions to coordination problems toward optimal ones. In order

to recall practical solutions to coordination problems, agents learn coordinated procedures from

execution traces and store them into a casebase that is organized around expectations about other

agents. Agents also learn better estimates for how likely individual actions are to succeed in order

to improve the quality of decisions when planning, communicating, and adapting plans.

It is a novel approach for individuals to learn procedures as a means for the group to coordi-

nate more efficiently. In addition, this work is distinct from prior procedural learning research in

several ways. Analyzing execution trace segments is more difficult than analyzing the output of a

first principles planner because trace segments may be noisy, inefficient, and incomplete. Unan-

ticipated requests and responses that occur during communication allow an agent to acquire coor-

dination knowledge about other agents, and constitute the building blocks of learned coordinated

procedures. Indexing casebase entries based on expected requests facilitates retrieving coordinated

procedures during conversations.

The learning techniques do not presume that agents have initial expertise about how to solve

coordination problems. Further, the model of joint activity presented in this work encompasses

autonomous agents who are heterogeneous, who do not have complete built-in common knowl-

edge, and who cannot coordinate solely by observation. As a result, this model is better suited for

open-world environments than previous research on coordination in multi-agent systems.

Overall, the results clearly demonstrate that the learning techniques enable agents to better

coordinate their activities. Learning coordinated procedures reduces action effort, communicative

effort, and planning effort, whether or not the agents have initial expertise in solving coordination

problems. Finally, there is leverage in storing and retrieving learned plans as a unit, rather than

having access to similar information that is accessed at separate times.

A Expected discounted reward

This appendix describes the expected discounted reward of a plan, which is a measure of how time-

efficient the plan is. The expected discounted reward for a plan is used when planning from scratch,

when making rational cooperation decisions, and when selecting among coordinated procedures in

memory.

The formulae in Figure 18 determine ����� ��� 
 , which is the weighted average discounted

reward for a plan � that is comprised of $ actions, �!� � ����� � � � , to achieve goals � given an ini-

tial planning state ��� . ( 	 ��$ � ��
 ��

� is set to 0.01 when called by the baseline planner so that

����� ��� 
���� for a partial plan � .)
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Figure 18: Formulae to compute the expected discounted reward of a plan � .

An agent can create a plan from scratch using a given set of actions in a hierarchical fashion

(cf. [32, 23]). The action descriptions are traditional; each action type is associated with a set of

preconditions (that include type checks on the action’s arguments) and anticipated effects. The

search heuristic is based upon an agent’s current probability estimates, so the agent produces plans

that are more likely to succeed during the course of action. For any given planning session, the

probabilities can be treated as fixed and the search algorithm is a version of best-first search. The

baseline planner maintains a list of planning objects that are sorted according to estimates of the

quality of the final plans that will be derived from the objects.

For each planning object # , ����� � # 
 is an (under-)estimate of the expected discounted reward

of the final plan to be produced by # . Since planning is hierarchical, each precondition of an

action is associated with a planning level at which it should be made true. Each planning object

# is associated with a planning level �	��� � � � # 
 , a partial plan � �	��$ � # 
 to achieve a set of goal

predicates � , a goal-stack, an expected discounted reward � ��� � # 
 , a state � 
���
���� # 
 , and a

parent planning object � ��
���$ 
	� # 
 . The plan and goal-stack may contain both actions and goals,

including subgoals that are preconditions of actions. There are three ways in which it differs from

the expected discounted reward of a plan. One difference is that � �	��$�� # 
 may contain unmet

preconditions (with criticality levels � �	��� � � � # 
 ) that will eventually force an action to be added

to the plan. Another is that there may be actions in the goal-stack that will eventually become part

of the plan (actions are put in the goal-stack when a planning object “descends” to the next lowest

planning level). Accounting for eventual additions to the plan makes the expected discounted

reward for # more accurate. The third difference is that to encourage — rather than legislate —

planning objects to be explored in a hierarchical manner, the expected discounted reward is divided

by the current planning level of # .

Figure 19 provides the formulae to compute � ��� � # 
 , which is derived from the expected

discounted reward of # ’s plan. When computing ����� ��� ����$�� # 
 
 , the formula to compute ��� 
��
from Figure 18 is replaced by the one in Figure 19 (so � � refers to an action in � �	��$�� # 
 , not the
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� $�� ��
���� the number of unmet preconditions in � �	��$ � # 
 that precede � �
��� 
 ��� ��� 
 ����� � �
� 
���
 � � $ � ��� , if ��� succeeds 
 � 	 � � ��� 
���
 � � $ � � $�� ��
 �

����� � # 
 �
����� ��� �	��$ � # 
 
 �

�����
	 � � �
��� ������������������������ !"�������#	%$ will succeed
�

&�'(�#��)+* ! &�'(����, � � � 	-$ , if
$

succeeds
�

�	��� � � � # 

Figure 19: Heuristic to estimate expected discounted reward for a planning object # .

goal-stack) . This treats unmet preconditions in � �	��$ � # 
 as actions with probability of success

1.0 and duration of 	 � � ��� 
���
 � � $ (which is 40 for MOVERS-WORLD). � 
 ��� � and � ��
 ��

� �
refer to the partial results generated when computing ����� ��� �	��$ � # 
 
 , where $ is the length of
� ����$�� # 
 . The acts � included in the product and sum in the equation for ����� � # 
 are the actions

in the goal-stack, not � �	��$ � # 
 . The reward for the second term in the numerator is at least 1

because a returned plan will accomplish at least one top-level goal.

The baseline planner starts with a queue containing a single planning object that has level

	 � �/. ��� � � (4 for MOVERS-WORLD), an empty plan, and a goal-stack containing only the top-

level planning goal(s). In each loop, if the queue is empty, no plan has been found and planning

terminates. Otherwise, the planning object # with the highest expected discounted reward is re-

moved from the queue. If the goal-stack of # is empty and �	��� � � � # 
 is 1, the loop is terminated

and the plan in # is returned as the result. If the goal-stack of # is empty and ����� � � � # 
 is greater

than 1, a new object is created, and added to the queue, that has a goal-stack equal to # ’s plan, an

empty plan, and whose criticality level is �	��� � � � # 
�0 
 . If the top of the goal-stack is an action and

all of its preconditions of criticality level greater than or equal to ����� � � � # 
 are true in � 
���
���� # 
 ,
it is moved to the plan. Otherwise, the unmet preconditions are inserted onto the goal-stack. If

the top of the goal-stack is a predicate that is true or whose criticality level is less than �	��� � � � # 
 ,
it is moved to the plan. Otherwise, a set of children planning objects are created and added to the

queue; one child is created for each action in the domain that may achieve the unmet predicate.

At planning time, an agent is content to construct a plan containing expectations about impasse

conditions. When an unmet precondition is an impasse condition, then the action added to the

plan is an expectation about the condition. The role-filler of the enabler is determined in the same

manner as other unbound role-fillers — by a subordinate search that seeks a bound action with the

highest expected discounted reward. This is not an anytime planning algorithm, so the agent must

complete her search for a plan before acting; if no plan is found, the agent will either do nothing

or respond to a request during the next tick.
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