
Learning Procedural Knowledge to Better Coordinate∗

Andrew Garland and Richard Alterman
Volen Center for Complex Systems

Brandeis University
Waltham, MA 02254

{aeg,alterman}@cs.brandeis.edu

Abstract

A fundamental difficulty faced by groups of agents
that work together is how to efficiently coordi-
nate their efforts. This paper presents techniques
that allow heterogeneous agents to more efficiently
solve coordination problems by acquiring proce-
dural knowledge. In particular, each agent au-
tonomously learns coordinated procedures that re-
flect her contributions towards successful past joint
behavior. Empirical results validate the significant
benefits of coordinated procedures.

1 Introduction
Research on groups of agents that work together is a large and
growing field that covers topics such as autonomous robots,
software agents, and smart objects. A fundamental difficulty
faced by such agents is how to coordinate their efforts when
they have overlapping objectives. This coordination prob-
lem is both ubiquitous and challenging, especially in envi-
ronments where agents have limited knowledge about, and
control over, other agents and the world around them.

This work is part of a line of research interested in groups
of agents that interleave planning and execution [desJardins
et al., 1999; Grosz and Sidner, 1990; Levesque et al., 1990;
Durfee and Lesser, 1991; Decker and Lesser, 1992; Grosz and
Kraus, 1996; Tambe, 1997]. In the present work, individual
agents are motivated by personal objectives and do not reason
about group-wide objectives or attempt to establish or main-
tain group-wide mental attitudes. The extent to which their
activity can be successful depends on the degree to which the
individuals’ objectives converge.

One approach to the coordination problem is to design
agents to have common built-in knowledge about the group,
such as knowledge of the planning or execution abilities of all
agents. This common knowledge makes agents more likely to
be able to efficiently solve coordination problems that occur
at runtime. Unfortunately, for many domains there will con-
tinue to be coordination problems that lie outside the initial
design because of the difficulty of foreseeing all possible in-
teractions in complex, dynamic environments.

∗This work was supported in part by the ONR (grants N00014-
96-1-0440 and N00014-97-1-0604).

In this paper, an agent acquires knowledge about the en-
vironment and other agents from experience, supplement-
ing any a priori common knowledge she might have. Thus,
individual agents learn to better coordinate their actions so
that the agents’ future behavior more accurately reflects what
works in practice.

The learning techniques are memory-based and a novel
contribution is a technique to learn coordinated procedures
based on past, possibly unplanned, successful joint behavior.
These procedures are extracts of execution traces, which are
the result of multiple planning sessions occurring at various
times during the activity, and are composed around, and orga-
nized by, coordination points [Alterman and Garland, 2001].
Unexpected requests and responses allow an agent to acquire
coordination knowledge about other agents, and constitute
the building blocks of learned coordinated procedures.

This paper begins by outlining the framework within
which the coordination problem is studied. The next section
presents the key technical details that allow agents to learn co-
ordinated procedures. Empirical results then demonstrate that
coordinated procedures provide a statistically significant im-
provement in run-time performance and are used efficiently
when planning. The paper ends with a discussion of related
work.

2 Coordinating independent agents
This section describes the aspects of the system framework
that are relevant to studying the coordination problem. The
most noteworthy features are the autonomy of the agents, the
distribution of both problem-solving knowledge and execu-
tion ability, and the role of communication as a coordination
mechanism. Given these attributes, even seemingly simple
problems create imposing hurdles to efficient coordination.

2.1 An example of a coordination problem

In the test-bed domain, called MOVERS-WORLD, the task
is to move boxes from a house onto a truck or vice versa.
MOVERS-WORLD has multiple agents of different types:
some are “lifters” and some are “hand-truck operators”. The
agents do not know their type or even have an internal rep-
resentation of the concept of type. Most actions are type-
specific, but all agents are able to move and communicate.
The duration of conversations between two agents varies

(HOLDING L1 BOX)

(HOLDING L1 BOX)

(AT L1 STREET)

(ON BOX HAND-TRUCK)

(AT HAND-TRUCK ROOM)

(ON BOX HAND-TRUCK)

(AT HTO ROOM)

(ON BOX HAND-TRUCK)

(AT HTO STREET)

(TILTING HTO HAND-TRUCK)

(AT HAND-TRUCK STREET)

(ON BOX HAND-TRUCK)(ON BOX TRUCK)

(CLEAR BOX)
(AT BOX ROOM) (AT L1 ROOM)

(TILTING HTO HAND-TRUCK)

STATE 2

STATE 3

L1’s private knowledge

STATE 4
L1’s private knowledge

STATE 1

knowledge

HTO’s
private

Figure 1: The distribution of problem-solving knowledge.

based on the content of the dialog. The agents have no built-
in planning knowledge about the execution abilities of agents
of other types. Each agent has the autonomy to decide which
goal(s) to work on at any time.

The rest of this subsection discusses how coordination
problems arises in MOVERS-WORLD. The plans a lifter can
generate and the plans a hand-truck operator can generate are
contrasted in the context of moving a single box onto a truck.
By expanding the problem to include more boxes, the dif-
ference in planning ability makes achieving optimal coordi-
nation impossible and achieving even near-optimal behavior
unlikely.

A solution path for a simple situation where a lifter (L1)
and a hand-truck operator (HTO) could work together to get
a box onto the truck is shown in Figure 1. Over the course of
the solution, the box “moves” through eight different states
(represented by ovals listing the salient predicates). Only L1
knows how to transform the box from state 1 to state 2. Only
HTO knows how to get from state 2 to state 3. And only L1
knows how to get the box from state 3 to state 4.

L1 cannot generate a plan to match this solution path on her
own since L1 has no planning knowledge of the hand-truck or
of HTO’s capabilities. Backward chaining can identify state
3 as a precursor to state 4 and forward-chaining can identify
state 2 as a successor to state 1. However, L1 cannot distin-
guish the pair of states (state 2, state 3) that is relevant to this
solution path from the many other pairs of states that are not
relevant to any solution path.

Coordination becomes more of an issue when the agents
want to move two boxes onto the truck in as little time as
possible. Optimal performance involves no communication
whatsoever and would take 244 ticks of a simulated clock.
However, without communication, L1 would never construct
a plan to load BOX1 onto the hand-truck! L1’s expectation
at the outset would be to move both boxes to the truck by
carrying them; HTO’s expectation is that both boxes would
be moved via the hand-truck. Furthermore, neither knows
that the other is working on the same two goals.

Ticks 1 to 15: HTO and L1 converse
"L1, would you help me achieve (ON BOX1 HANDTR)?"
"HTO, I’ll help, but you’ll have to wait a bit."

Ticks 16 to 45: <LIFT L1 BOX1>
Ticks 46 to 80: <LOAD L1 BOX1 HANDTR>
Ticks 81 to 100: <TILT-HANDTR HTO HANDTR>
Ticks 81 to 112: <LIFT L1 BOX2>
Ticks 101 to 125: <PUSH-HANDTR HTO HANDTR STREET>
Ticks 113 to 152: <CARRY L1 BOX2 STREET>
Ticks 126 to 145: <STAND-HANDTR HTO HANDTR>
Tick 146: HTO trying to contact L1 ...
Ticks 153 to 167: HTO and L1 converse

"L1, would you help me achieve (ON BOX1 TRUCK)?"
"HTO, I’ll help, but you’ll have to wait a bit."

Ticks 168 to 202: <LOAD L1 BOX2 TRUCK>
Ticks 203 to 237: <UNLOAD L1 BOX1 HANDTR>
Ticks 238 to 272: <LOAD L1 BOX1 TRUCK>

Figure 2: A near-optimal solution to a coordination problem.

The closest to optimal that is possible given baseline co-
ordination abilities is 272 ticks as shown in Figure 2. That
solution requires that L1 agrees to help HTO on both oc-
casions and that L1 correctly adapts her plan. While none
of these is unlikely independently, neither agent possesses
enough knowledge to reliably act in this way. As the com-
plexity of the problems increases by including other agents
and increasing the number of boxes, there is an exponential
increase in the number of decisions that all must be made
“correctly” for the community to perform even this close to
optimal.

Coordination problems in this domain are not solely a con-
sequence of the distribution of planning knowledge. Even
if both agents had common goals and planning knowledge,
there is ambiguity about the order on which to work on the
goals. Also, when there is uncertainty about the outcome
of actions, they may have different preferences among alter-
native solutions.1 Finally, agents may have different beliefs
about the current state of the world, leading to different be-
liefs about the best course of action.

2.2 Communication as a coordination mechanism
In terms of the coordination problems faced by the agents, a
central feature of this system is that communication, coop-
eration, and coordination are shaped by the autonomy of the
agents. Agents do not communicate at planning time; they
plan independently, act independently, and only communicate
when necessary to establish cooperation or to maintain coor-
dination. Each problem includes some goal(s) that can only
be solved by agents that work together, so communication is
an essential part of the community activity.

Communication happens at coordination points, which
are defined as points in the activity where an actor cannot
progress without the assistance of someone else. If all ac-
tions are reversible and the goals of the agents do not con-
flict, conversing at individual coordination points at the time
when they arise is sufficient to ensure that the activity will be
completed.

1The fact that actions are not deterministic will not be addressed
in detail in this paper.

Agents’ decision-making strategies are based upon per-
sonal, rather than group-wide, objectives. If an agent is will-
ing to cooperate, she may be unable to construct a plan to do
so; an agent who is unwilling or unable to assist can propose
an alternative that the original requester may now contem-
plate adopting. After agreeing to cooperate, an agent can “opt
out” at any time, without obligation to notify other agents.

When cooperation is first established during communica-
tion, the agents must determine how they will coordinate.
Sometimes, nothing needs to be done to begin coordinating;
more often, though, the requester will idle for several time
steps — for example, if a lifter is not currently ready to lift
the box. An agent will stop waiting if another agent initiates
communication, either to establish a new agreement or to in-
dicate progress on a current agreement (e.g., the other lifter
now indicates she is ready to act). The agent will also stop
waiting upon observing the completion of the request (e.g.,
the box appears on the hand-truck). Finally, if an agent is idle
“too” long (i.e., longer than a pre-set threshold), the agent in-
quires about the status of her request (possibly discovering
that the other agent has opted out).

Communication is the only mechanism whereby agents can
check if they are working on the same goals since there are
no global structures, such as blackboards, available. While
observation is sufficient to engineer the exit from coordina-
tion problems, the agents are not assumed to possess the com-
mon goals and knowledge of each other required in order to
solve coordination problems without any communication [cf.
Genesereth et al., 1986; Huber and Durfee, 1995].

3 Leveraging past experience
This section will describe the case-based reasoning [Kolod-
ner, 1993] techniques that individual agents use to acquire
and use coordinated procedures in order to better coordinate.
A guiding principle of these techniques is that memory should
be organized around coordination points. There is no commu-
nication between the agents during the learning process; the
memories are created and maintained by each agent indepen-
dently.

3.1 Learning coordinated procedures
Coordination points influence three facets of the learning pro-
cess. Most importantly, coordination devices that represent
past successful joint achievement of coordination points form
the skeleton of future plans. Next, memories are primarily
indexed based on expected future requests in order to make
the memory more likely to be recalled during communica-
tion. Third, coordination points influence the determination
of state-based secondary indices.

Figure 3 contains pseudo-code for LEARNCOORDINATED-
PROCEDURE, which is the method by which agents transform
experience into memories. Coordinated procedures are de-
rived from execution traces, which are quite noisy because ac-
tions and requests can fail or be ineffective for other reasons.
There are many details involved in the process of transform-
ing such noisy data into something suitable for learning that
have not been addressed in prior work on procedural learning.
Space prevents covering many of them here; the interested

LEARNCOORDINATEDPROCEDURES (executionTrace) ≡
cleanTrace← CLEAN(executionTrace)
segmentGoalsPairs← SEGMENT(cleanTrace)
forall 〈segment, goals〉 in segmentGoalsPairs

coreSegment← REMOVEINEFFICIENCIES(segment, goals)
STORECOORDINATEDPROCEDURE(coreSegment,goals)

STORECOORDINATEDPROCEDURE (coreSegment, goals) ≡
procedure← LIST()
times← LIST()
requests← LIST()
forall step in REVERSE(coreSegment)

if KEEP(step,procedure)
procedure← PUSH(step, procedure)
times← LIST()
requests← LIST()

times← PUSH(STARTTIME(step), times)
if step is an agreement to achieve a coordination point

requests← PUSH(step, requests)
if HEAD(procedure) is not a member of requests

ADDCASEBASEENTRY(procedure,goals,null, times)
forall r in requests

rT imes← REMOVELATERTHAN(times, STARTTIME(r))
ADDCASEBASEENTRY(procedure,goals, r, rT imes)

Figure 3: Algorithms to learn coordinated procedures.

reader is directed elsewhere [Garland, 2000] for more about
cleaning, segmenting, and removing inefficiencies from ex-
ecution traces. There are two other non-trivial procedures,
KEEP and ADDCASEBASEENTRY, whose pseudo-code is not
given but whose important aspects will be described below.

STORECOORDINATEDPROCEDURE converts an execution
trace segment into a coupling of a coordinated procedure and
its indexing information. The primary tasks of STORECOOR-
DINATEDPROCEDURE are:

1. Construct a coordinated procedure by summarizing and
optimizing the execution trace segment.

2. Determine the set of expected requests that the agent
could use as retrieval cues in the future.

3. For each entry to be added to the case base, determine
the set of states in which the agent should consider re-
trieving the entry.

The motives for summarizing an execution trace segment
are: the particular time at which subordinate goals were
achieved at runtime may be misleading; the stored plan will
be more easily adapted in the future (at the cost of regener-
ating the original action if it is needed again); and the state-
based indices for case-base entries are generalized each time
the same procedure is stored under different indices. Opti-
mizations allow agents to improve upon, rather than just re-
peat, the way in which some coordination points are jointly
achieved.

Storing procedures under several indices is a good heuris-
tic when agents do not share indexing information and there
is uncertainty about the setting at the outset of cooperation. In
addition, the state of the world at the start of the first step of

the coordinated procedure is not the only reasonable bench-
mark for determining future settings in which the procedure
will be effective. Alternative indexing states are provided by
the (removed) steps in the execution trace summary that pre-
cede the first kept step.

The pseudo-code in Figure 3 sets forth how STORECOOR-
DINATEDPROCEDURE records indexing information while
adding actions to the coordinated procedure. A call to the
KEEP function determines which actions from the execution
trace segment are added to the procedure. For each step,
whether it is kept or not, the time at which it was started is
added to a list of indexing times and agreements are added
to a list of expected requests. When a step is added to the
procedure, these lists are reset.

After the coordinated procedure has been determined, it
is stored into memory without any reference to an expected
request (unless the first step in the plan is an expected re-
quest). Next, the procedure is stored again for each expected
request so that the request is part of the primary storage in-
dex. Indexing in this way facilitates retrieving coordinated
procedures during conversations. The means by which coor-
dination points influence the state-based secondary indices is
less direct, and is determined by ADDCASEBASEENTRY.

ADDCASEBASEENTRY makes representational changes to
the procedure and maintains the structure of the underlying
case base. In terms of the organization of memory, a notable
division is that STORECOORDINATEDPROCEDURE computes
the relevant times to check the state of the world; ADDCASE-
BASEENTRY converts those states into concrete case-base in-
dices. For this work, the secondary indexing scheme is influ-
enced by the top-level goals and the expected requests of the
entry. The literals from these are culled and then all relevant
predicates in the state relating to the literals are identified.
Relevancy is determined from the surface features of the en-
vironment, rather than from analysis of the stored plan [cf.
Hammond, 1990; Veloso and Carbonell, 1993].

The most interesting aspect of KEEP is the treatment of co-
ordination points. The principle summarization criteria is to
remove actions that are planner-reconstructible — this pro-
duces a skeleton of coordination mechanisms that is fleshed
out by the essential individual actions needed to support the
achievement of coordination. An important characteristic
of summarization is that it never removes: (1) coordination
mechanisms for agreements, (2) coordination points that cor-
respond to unexpected requests, or (3) actions that end a shift
between goals. Requests for joint action require special han-
dling to ensure that the initiator only keeps the joint action
and the assistant only remembers to expect a request.

The heuristic optimizations currently implemented are in-
tended to eliminate some conversations altogether. For ex-
ample, based on past experience, a lifter learns to load the
hand-truck without being explicitly told to do so. Likewise,
the hand-truck operator learns to expect the lifter to load the
hand-truck without the hand-truck operator’s guidance. The
risk of the heuristics is that if agents do not recall compatible
memories, time and effort may be wasted.

One optimization rule (implemented in KEEP) is that an
agent who agreed to a request removes the corresponding co-
ordination mechanism from the coordinated procedure. This

Time Action Outcome

1 agreed with L2 to ... Summarized
21 <LIFT-TOGETHER XLBOX1> Summarized
91 HTO asked to (ON XLBOX1 HANDTR3) Optimized

105 L2 agreed to ... Summarized
126 <LOAD-TOGETHER XLBOX1 HANDTR3> Kept
161 <LIFT MBOX0> Summarized
191 <CARRY MBOX0 STREET1> Summarized
231 <LOAD MBOX0 TRUCK3> Kept
266 HTO asked to (ON XLBOX1 TRUCK3) Optimized
279 L2 agreed to ... Summarized
300 <UNLOAD-TOGETHER XLBOX1 HANDTR3> Summarized
335 L2 agreed to ... Summarized
353 <LOAD-TOGETHER XLBOX1 TRUCK3> Kept

L1 adding case-base entry MEM75
Procedure: (<LOAD-TOGETHER ?L1-177 ?L1-174>

<LOAD ?L1-175 ?L1-176>
<LOAD-TOGETHER ?L1-177 ?L1-176>)

Top-level goals: ((ON ?L1-177 ?L1-176)
(ON ?L1-175 ?L1-176))

Request: NIL
State indices based on ticks 1, 21, 91, 105, 126

L1 adding case-base entry MEM76 derived from MEM75
Request: (LIFT-TOGETHER ?L1-177) by ?L1-180
State indices based on tick 1

L1 adding case-base entry MEM77 derived from MEM75
Request: (ON ?L1-177 ?L1-174) by ?L1-173
State indices based on ticks 1, 21, 91

Figure 4: Three entries for a single coordinated procedure.

guideline reflects an optimistic belief that the agent knows
the right time to accomplish the request without being specifi-
cally asked. A second guideline, dual to the first, is part of the
representational changes performed by ADDCASEBASEEN-
TRY. For an initiator of a request, the procedure passed into
ADDCASEBASEENTRY contains a coordination mechanism
that will prompt the agent to establish the same request again
in the future. This mechanism is heuristically converted into
an (optimistic) expectation that the request for service will
be satisfied without a direct request. These two optimizations
currently only relate to requests for service and not to requests
for joint action, which require more precise timing.

Figure 4 shows some (lightly edited) output when agent
L1 is adding multiple case-base entries for the same coordi-
nated procedure. In this example, the agent is creating one
top-level entry and two request entries. The performance that
led to learning this procedure was exceptional (33% fewer
ticks than average) and was chosen for illustrative purposes;
execution traces are normally much more chaotic. The only
failure, which is not shown in the figure, is an attempt at time
71 by the two lifters to jointly carry the box to the street.

3.2 Acting from shared past experience

Acting from shared past experience can lead agents to coor-
dinate more efficiently. For example, when an agent receives
a familiar request, she can retrieve a plan which anticipates
future requests rather than merely creating a plan to satisfy
that single request. When different agents anticipate the same

points of coordination, they can coordinate more effectively
for three reasons:

1. They will not waste time discussing alternatives that will
prove to be unproductive.

2. They will not waste time negotiating over two viable al-
ternatives.

3. In some cases, they can eliminate communication en-
tirely.

Unfortunately, acting from past experience does not guar-
antee that agents will coordinate more efficiently. First of all,
there may not be regularity in the types of coordination prob-
lems faced by the community. Second, agents will sometimes
assess the same situation in disparate manners. This reflects
both differences in experience between agents and the open-
endedness of interpretation in general. Thus, it is important to
store procedures so that different agents are likely to retrieve
compatible memories in many situations. In this paper, com-
patible viewpoints on which past activities to recall develop
when storage is guided by coordination points and surface
features of the environment.

When planning, agents prefer coordinated procedures from
similar past activities to plans constructed by the baseline
planner. However, an agent does not search her case base
when a planning session immediately follows the failure of a
retrieved plan. For the experiments in the next section, coor-
dinated procedures are recalled during planning slightly more
than 20% of the time during the last problem-solving episode.

An agent measures the similarity of a case-base entry to the
current setting by determining what percentage of the stored
predicates can be made true given the possible mappings of
literals in the current state to required role-fillers for the en-
try. For those entries that meet or exceed the current highest
similarity (at least above a pre-set threshold of 0.50), the co-
ordinated procedure stored in the entry is checked to see if it
can be adapted to the current state of the world. If so, the cur-
rent highest similarity is updated. Finally, the best of the best
is selected from the entries with maximal similarity. There
are various ways to determine the best of the best such as ran-
domly or by the number of storages for the entry. The results
in the next section rank the plans using the same heuristic as
the baseline planner (most time-efficient) and break any re-
maining ties randomly.

In experiments conducted so far, the number of entries in
each agent’s case base has been less than 50, so neither stor-
age nor retrieval was a bottleneck. In general, a more refined
secondary indexing scheme, such as indexing by differences
[Kolodner, 1983a,b] might be needed. Further refinements
such as distinguishing between short and long term mem-
ory or selectively “forgetting” past cases [Smyth and Keane,
1995] may also be fruitful.

4 Empirical results and analysis
This section supports the claim that learning coordinated pro-
cedures leads agents to better coordinate with empirical stud-
ies from an implemented testbed. The experimental method-
ology takes into account the possible influence of sampling
bias and ordering effects; each data point reported is the av-
erage of 600 trials.

In all of the experiments in this section, agents acquire co-
ordination knowledge independently of learning coordinated
procedures — agents learn more accurate probability esti-
mates of the likelihood of success of possible actions. Agents
use probabilities when planning from scratch, when decid-
ing who to ask for help, when deciding whether to cooper-
ate, and when adapting coordinated procedures to match the
current problem setting. Having more accurate probability
estimates, therefore, can cause agents to behave more effi-
ciently. A learning structure, based on COBWEB [Fisher,
1987] trees, enables agents to increase the accuracy of prob-
ability estimates by generalizing past experiences interacting
with the domain and other agents. For more details, see Gar-
land [2000].

There are many ways to measure the performance of the
agent community, such as the number of primitive actions at-
tempted and the number conversations that occur. The best
overall measure of community effort, however, is the number
of ticks of a simulated clock that transpire during the course
of the community solving the problem. The number of ticks
measures both action and communication effort, in addition
to time when the agents are idle for one reason or another (see
Figure 2).

In order to measure the advantages of learning coordinated
procedures under various conditions, the type of coordinated
procedures learned and the initial ability of agents to solve
coordination problems were varied. The possible types of co-
ordinated procedures are:

Basic A basic coordinated procedure is not optimized and
only achieves a single goal.

Improved An improved coordinated procedure is optimized
and may achieve multiple goals (as in Figure 4).

A third possibility is to learn better probability estimates only
and not learn any coordinated procedures.

The three initial levels of ability to solve coordination prob-
lems are:

Minimal The minimal amount of coordination knowledge
is a predicate-based communication language based on
goals, coordination points, and the ability to make un-
ambiguous external references.

Basic Basic agents have additional planning knowledge of
other agents and the ability to make goal-selection
choices based on past experience. The coordination in-
formation built into basic agents was determined by an-
alyzing the coordination knowledge implicitly acquired
by basic coordinated procedures.

Expert Expert agents have additional hand-crafted goal-
selection and coordination strategies, including an ex-
tension of the heuristic optimizations.

Note that basic and expert agents have abilities that exceed
those assumed in Section 2.

Table 1 presents a tabular summary of the results of run-
ning the system for each of the combinations of initial abil-
ity and type of coordinated procedures learned. For each of
these nine runs, the chart shows the number of ticks required
to solve the tenth problem-solving episode faced by the com-
munity. The data in the first column indicate that improving

Built-in Type of Coordinated
Coordination Procedures Learned

Ability None Basic Improved
Minimal 846.3 747.2 623.5
Basic 789.2 743.5 640.6
Expert 687.4 641.5 594.1

Table 1: Comparison of the amount of community effort re-
quired for the tenth problem-solving episode.

the initial coordination ability of non-learning agents substan-
tially reduces the number of ticks. Scanning across each row
of Table 1 shows that, regardless of the initial coordination
ability of the agents, learning basic coordinated procedures
led to significant reductions in the number of ticks (with 99%
confidence). Improved coordinated procedures are always
significantly more effective than basic ones.

The second row of Table 1 warrants special attention. By
design, agents with basic initial coordination abilities have
access to the same goal-selection and planning knowledge as
agents can learn over time through basic coordinated proce-
dures. The fact that agents with basic abilities nonetheless
benefit from learning such procedures shows that these pieces
of knowledge are more useful as a unit, when retrieved from
the case base, than when accessed separately.

The benefits of learning coordinated procedures are imme-
diate. This is evinced by the learning curves, plotted with
their 99% confidence intervals, shown in Figure 5. A com-
parison of curves MN and EN, two runs when agents are not
learning coordinated procedures, points out that the impact of
augmenting the initial ability to solve coordination problems
does not diminish over time. A comparison of curves MI and
MN, two runs when agents have minimal initial abilities to
solve coordination problems, shows that the importance of
learning coordinated procedures grows over time. Most im-
portantly, comparing curves MI and EN reveals that learning
coordinated procedures is more effective than initial expertise
by the second problem-solving episode.

600

700

800

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10

 600

 700

 800

 900

1000

1100

1200

A
ve

ra
ge

 N
um

be
r

of
 T

ic
ks

Problem Solving Episode Number

Minimal, Improved (MI)
Minimal, None (MN)

Expert, None (EN)

Figure 5: Comparing runtime effort.

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

20

30

40

50

60

70

80

A
vg

. #
 o

f
N

od
es

 E
xp

an
de

d

Problem Solving Episode Number

(EI) Expert, Improved
(MN) Minimal, None
(EN) Expert, None

Figure 6: Comparing planning effort.

Another significant advantage of learning coordinated pro-
cedures is in controlling the amount of planner search. Fig-
ure 6 depicts planning effort, as measured by the average
number of planning nodes expanded per call to the planner.
The disparity between curves MN and EN provides evidence
that initial expertise comes with a price — the increased
amount of planning information can lead to a large increase
in planner search. However, learning and acting from past
experience controls planner search so effectively that experts
who learn coordinated procedures (curve EI) expanded fewer
planning nodes than agents with minimal initial knowledge
who do not learn them (curve MN).2

Learning coordinated procedures leads to similar statisti-
cal improvement in the number of conversations, the number
of ticks spent conversing, the number of attempted actions,
and the number of successful actions. Furthermore, these re-
sults hold across a wide spectrum of possible goal-selection
strategies, cooperation strategies, and communication costs
[Garland, 2000].

Overall, the results clearly demonstrate that coordinated
procedures are an effective resource for agents to learn to bet-
ter coordinate their run-time activities. Learning coordinated
procedures benefits agents regardless of the initial ability to
solve coordination problems. There is leverage in storing and
retrieving plans based on the surface features of the environ-
ment, rather than having access to similar information that is
accessed at separate times. Finally, the techniques are very
effective in preventing increased planner search.

5 Related Research
Learning coordination knowledge in multi-agent systems has
been studied in frameworks with different assumptions than
those made in this paper, such as in homogeneous systems
[Sugawara and Lesser, 1998] and communication-free do-
mains [Haynes and Sen, 1998; Ho and Kamel, 1998]. In a
system with similar underpinnings, Prasad and Lesser [1999]
implement a learning system that extends the generalized par-
tial global planning [Decker and Lesser, 1992] architecture

2CPU time, another common measure of planning effort, is also
reduced significantly by learning coordinated procedures.

by allowing the agents to choose a coordination mechanism
(from a commonly known set of choices) based upon the re-
sults of training runs. All agents make the same choice be-
cause agents communicate their local viewpoints to all other
agents to form a consistent global viewpoint and each agents
records the same training data. By contrast, in this paper,
each agent learns independently on the basis of their own ex-
periences. Also, the techniques are applicable in the absence
of built-in common knowledge and agents acquire procedures
in addition to compatible viewpoints about how to coordinate
activity.

In this work, procedural learning is based on run-time be-
havior, which differs from learning techniques based upon
the output of planning sessions [Carbonell, 1983; Veloso
and Carbonell, 1993; Laird et al., 1986; Kambhampati and
Hendler, 1992; Sugawara, 1995]. Reusing a plan derivation
will not produce a sequence of actions to better solve a sim-
ilar problem in the future if the derivation was deficient (due
to the agent’s incomplete knowledge). On the other hand,
execution traces encapsulate the history of both planned and
unplanned agent interactions with the domain. Consequently,
procedures are learned that were not developed in a single (or
multiple) planning histories. Thus, some coordinated proce-
dures stored in memory can represent unplanned successes.
Remembering examples of past successes differs from pre-
vious approaches to changing run-time behavior that have
emphasized learning from failures [Hammond, 1990; Haynes
and Sen, 1998].

References
Richard Alterman and Andrew Garland. Convention in joint

activity. Cognitive Science, 25(4), 2001.

Jaime Carbonell. Derivational analogy and its role in problem
solving. In Proc. Third National Conference on Artificial
Intelligence, pages 64–69, 1983.

Keith S. Decker and Victor R. Lesser. Generalized partial
global planning. Intl. Journal of Intelligent and Coopera-
tive Information Systems, 1(2):319–346, 1992.

Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz,
and Michael J. Wolverton. A survey of research in dis-
tributed, continual planning. AI Magazine, 20(4):13–22,
1999.

Edmund H. Durfee and Victor R. Lesser. Partial global plan-
ning: A coordination framework for distributed hypothesis
formation. IEEE Transactions on Systems, Man, and Cy-
bernetics, 21(5):1167–1183, 1991.

Douglas H. Fisher. Knowledge acquisition via incremen-
tal conceptual clustering. Machine Learning, 2:139–172,
1987.

Andrew Garland. Learning to Better Coordinate in Joint Ac-
tivities. PhD thesis, Brandeis University, 2000.

Michael Genesereth, Matt Ginsberg, and Jeffrey Rosen-
schien. Cooperation without communication. In Proc. Fifth
National Conference on Artificial Intelligence, pages 51–
57, 1986.

Barbara Grosz and Sarit Kraus. Collaborative plans for com-
plex group action. Artificial Intelligence, 86:269–357,
1996.

Barbara Grosz and Candace Sidner. Plans for discourse. In
Philip R. Cohen, Jerry Morgan, and Martha E. Pollack, ed-
itors, Intentions in Communication, pages 417–444. Brad-
ford Books, 1990.

Kristian J. Hammond. Case-based planning: A framework for
planning from experience. Cognitive Science, 14:385–443,
1990.

Thomas Haynes and Sandip Sen. Learning cases to resolve
conflicts and improve group behavior. Intl. Journal of
Human-Computer Studies, 48:31–49, 1998.

Fenton Ho and Mohamed Kamel. Learning coordination
strategies for cooperative multiagent systems. Machine
Learning, 33(2-3):155–177, 1998.

Marcus J. Huber and Edmund H. Durfee. Deciding when
to commit to action during observation-based coordina-
tion. In Proc. First Intl. Conference on Multiagent Systems,
pages 163–170, 1995.

Subbarao Kambhampati and James A. Hendler. Control of
refitting during plan reuse. Artificial Intelligence, 55:193–
258, 1992.

Janet L. Kolodner. Maintaining organization in a dynamic
long-term memory. Cognitive Science, 7:243–280, 1983.

Janet L. Kolodner. Reconstructive memory: A computer
model. Cognitive Science, 7:281–328, 1983.

Janet L. Kolodner. Case-Based Reasoning. Morgan Kauf-
mann Publishers, San Mateo, CA, 1993.

John E. Laird, Paul S. Rosenbloom, and Alan Newell. Chunk-
ing in SOAR: The anatomy of a general learning mecha-
nism. Machine Learning, 1:11–46, 1986.

Hector J. Levesque, Philip R. Cohen, and José H. T. Nunes.
On acting together. In Proc. Eighth National Conference
on Artificial Intelligence, pages 94–99, July 1990.

M. V. Nagendra Prasad and Victor R. Lesser. Learning
situation-specific coordination in cooperative multi-agent
systems. Autonomous Agents and Multi-Agent Systems,
2:173–207, 1999.

Barry Smyth and Mark T. Keane. Remembering to forget. In
Proc. Fourteenth Intl. Joint Conference on Artificial Intel-
ligence, pages 377–382, 1995.

Toshiharu Sugawara and Victor Lesser. Learning to improve
coordinated actions in cooperative distributed problem-
solving environments. Machine Learning, 33(2-3):129–
153, 1998.

Toshiharu Sugawara. Reusing past plans in distributed plan-
ning. In Proc. First Intl. Conference on Multiagent Sys-
tems, pages 360–367, 1995.

Milind Tambe. Towards flexible teamwork. Journal of Artifi-
cial Intelligence Research, 7:83–124, 1997.

Manuela Veloso and Jaime Carbonell. Derivational analogy
in PRODIGY: Automating case acquisition, storage, and
utilization. Machine Learning, 10:249–278, 1993.

