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To exploit parallelism on shared memory parallel computers (SMPCs), it is natural to focus on
decomposing the computation (mainly by distributing the iterations of the nested Do-Loops). In
contrast, on distributed memory parallel computers (DMPCs), the decomposition of computation
and the distribution of data must both be handled—in order to balance the computation load and to
minimize the migration of data. We propose and validate experimentally a method for handling com-
putations and data synergistically to minimize the overall execution time on DMPCs. The method
is based on a number of novel techniques, also presented in this article. The core idea is to rank the
“importance” of data arrays in a program and specify some of the dominant. The intuition is that the
dominant arrays are the ones whose migration would be the most expensive. Using the correspon-
dence between iteration space mapping vectors and distributed dimensions of the dominant data
array in each nested Do-loop, allows us to design algorithms for determining data and computation
decompositions at the same time. Based on data distribution, computation decomposition for each
nested Do-loop is determined based on either the “owner computes” rule or the “owner stores” rule
with respect to the dominant data array. If all temporal dependence relations across iteration parti-
tions are regular, we use tiling to allow pipelining and the overlapping of computation and commu-
nication. However, in order to use tiling on DMPCs, we needed to extend the existing techniques for
determining tiling vectors and tile sizes, as they were originally suited for SMPCs only. The overall
method is illustrated on programs for the 2D heat equation, for the Gaussian elimination with piv-
oting, and for the 2D fast Fourier transform on a linear processor array and on a 2D processor grid.
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Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; E.1 [Data Structures]: arrays

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Computation decomposition, data alignment, data distribution,
distributed-memory computers, dominant data array, iteration space mapping vector, parallelizing
compilers, spatial dependence vector, temporal dependence vector, tiling techniques

1. INTRODUCTION

Distributed memory parallel computers (DMPCs) have been playing an im-
portant role in solving computationally-intensive problems, as they are rela-
tively easily scalable; given a large number of processing elements (PEs), they
are suited for effectively solving large problems—such as Grand Challenge
Problems [Hwang 1993]. However, program development for DMPCs is time-
consuming and error-prone, as the programmer is forced to manage both par-
allelism and communication [Callahan and Kennedy 1988; Rogers and Pingali
1994; Zima and Chapman 1993]. The tools generally used for managing these
are the decomposition of computation and the decomposition (distribution) of
data. Our key contribution is a set of integrated techniques of jointly produc-
ing decompositions for both computation and data, focusing on data distribution
first, and specifying computation decomposition based on it. In the Introduction,
we start by briefly reviewing some relevant previous work and then providing
an introduction to our approach.

Early pioneering work dealt with mapping of Do-loops (For-loops) with reg-
ular temporal dependence relations into systolic arrays by exploiting pipelin-
ing opportunities in sequential programs. Iterations in a nested Do-loop were
mapped using space and time transformations into PEs and a global sched-
ule obeying a semantically required partial order. For some theoretical and
experimental work in this area, see Chen [1988], Huang and Lengauer [1987],
Kung and Leiserson [1980], Lam [1987], Lee and Kedem [1988, 1990a, 1990b],
Moldovan and Fortes [1986], Ribas [1990], Shang and Fortes [1992], and Tseng
[1990].

As in general, the number of iterations in a nested Do-Loop is much larger
than the number of PEs, a set of iterations called a tile is assigned to each PE,
with the property that they can be executed in the PE without communica-
tion with other PEs. Of course, there cannot be any cyclic dependences among
(the iterations in) the tiles. In Irigoin and Triolet [1988], a sufficient condition
for existence of tiles without size restriction was presented. In Hogstedt et al.
[1999], the relationship between the shape of the tiles and the execution time
was studied. For a subclass of loops that constituted rectilinear iteration spaces,
a closed form formula for their execution time was also presented. Others con-
centrated on finding tiles with size restriction to minimize execution time and
communication [Boulet et al. 1994; Desprex et al. 1998; Hodzic and Shang 1998;
Ramanujam and Sadayappan 1992; Wolf and Lam 1991; Xue 1997]. Previous
work, however, addressed only tiling the iteration space of a single nested

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 1, January 2002.



Automatic Data and Computation Decomposition • 3

Do-loop on (effectively) shared memory devices. Thus, data distribution was
not considered, making this work too restrictive for DMPCs, where, for exam-
ple, consideration must be given to minimizing the cost of data reorganization
between consecutive Do-Loops.

Results were also obtained on deriving communication-free properties
through loop transformations and data replication. If the null space of the space
generated by temporal dependence vectors in a nested Do-loop is not empty,
then if read-only data can be replicated there exists a communication-free com-
putation decomposition, whose partitioning hyperplanes are perpendicular to
a basis of that null space [Chen and Sheu 1994]. It is also possible to formulate
equations for mapping both iteration space and data space into PEs, and then
to find communication-free properties or data and computation decomposition
properties of nested Do-loops [Anderson 1997; Huang and Sadayappan 1993;
Ning et al. 1995; Ramanujam and Sadayappan 1991; Shih et al. 1996; Wolf and
Lam 1991]. In Couvertier-Reyes [1996], additional methods were proposed for
determining communication-free solutions for the computation and data align-
ment problem. However, partitioning hyperplanes found by the above methods
frequently are not perpendicular to any axis of the iteration space or the data
space. This implies that data arrays are not distributed independently along
each dimension; for example, data arrays are stored among PEs in a skewed
manner.

In Lim and Lam [1994, 1998] and Lim et al. [1999], an affine partitioning
framework was presented to map each statement into the time or processor
space; this could maximize parallelism while minimizing synchronization and
communication for multiple Do-loops on (distributed) shared-memory comput-
ers. In Barua et al. [1996], a cost model that estimated the cost of communication
and data partitioning for a Do-loop by a tiling method was presented [Agarwal
et al. 1993, 1995]. Furthermore, a heuristic algorithm was proposed to deal with
multiple Do-loops and data arrays. Both methods allowed to tile iteration space
by nonrectangular blocks, and therefore data arrays might be stored among PEs
in a skewed manner. In addition, when there are multiple Do-loops and data ar-
rays, data distributions for them might conflict. As an exhaustive search to find
the optimal solution was NP-hard and not practical, a good heuristic algorithm
was important [Barua et al. 1996].

However, as mentioned above, although data distributions may be ignored
on shared memory model, they are a crucial factor for gaining performance
on DMPCs, as a remote memory reference is much more expensive than a
local memory reference. To support data parallel programming, current High-
Performance Fortran (HPF) standard only allows data arrays to be distributed
in block, cyclic, block-cyclic, replicated, fixed, or not-distributed fashions
[Koelbel et al. 1994]. Communication free and affine partitioning approaches
only can be adopted with additional restrictions on DMPCs. All the methods
employed in systolic algorithm design, tiling, communication-free design, and
affine partitioning, belong to the computation decomposition approach. To use
these methods, additional data distribution constraints are needed so that they
can be employed for DMPCs.
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Recently, component alignment algorithms for guiding data distributions
and scheduling computation based on the owner computes rule became
prominent [Gupta and Banerjee 1992a; Lee 1995b; Li and Chen 1991b]. Data
realignment between program fragments can also be minimized by compar-
ing the relative costs of different data distribution schemes, in which align-
ment relations and candidate distributions were represented by a weighted
graph in which computation cost for a program fragment was associated with
each node and redistribution cost was associated with each edge. Determin-
ing whether data redistributions were necessary, was reduced to a path-finding
problem [Chatterjee et al. 1993, 1994a, 1994b; Gupta and Krishnamurthy 1998;
Lee 1997; Palermo 1996]. Among them, methods by Chatterjee et al., Gupta and
Krishnamurthy, and Palermo adopted a top-down approach and Lee adopted a
bottom-up approach.

0–1 integer programming approaches were also proposed for deciding dy-
namic data distributions in the interphase data layout problem [Kennedy and
Kremer 1998; Kremer 1995, 1998]. With an exhaustive search, it was possible
to obtain a good data alignment and to determine data distribution. However,
there is a cyclical dependence while formulating cost models for data distri-
bution and communication. A data distribution scheme must be given before
analyzing communication cost, but the determination of whether a data distri-
bution scheme is good or not really depends on which communication primitives
are involved. In order to not increase the search space too much (which itself is
of exponential order), only row-wise and column-wise or other restricted data
distribution schemes can be considered. Therefore, candidate data distribu-
tions found might be only suboptimal. Due to temporal dependence relations,
block sizes of block-cyclic distributions and tile sizes are closely related to com-
putation decomposition, and therefore for good performance, both data and
computation decomposition are important. Both of them should be determined
together, and not by optimizing one of them first and then trying to fit the
second one to it. For a complete survey of other data distribution techniques,
see Lee [1997].

In general, component alignment approaches are very promising for DMPCs,
because dimensions on each data array can be distributed independently from
each other, and following the HPF standard. What needs to be done is the com-
bination of determining data distributions for data spaces and computation
decompositions for iteration spaces. The focus of our article is a framework
for doing this. It includes an alignment phase and a distribution phase. The
alignment phase identifies data realignment between program fragments and
determines axis alignments for a program fragment, with consecutive Do-loops
within the fragment sharing the same data distribution scheme. The distribu-
tion phase simultaneously determines data distributions for data spaces and
computation decompositions for iteration spaces.

We use both temporal and spatial dependence vectors (we introduce the
latter) for determining which dimensions of a data array should be distributed.
Temporal vectors come from data dependence/use relations in the iteration
space of a single nested Do-loop. Therefore, they are useful for determining
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computation decomposition for that Do-loop. Spatial vectors come from data
dependence/use relations in the data space of data arrays within a program
fragment, which may include several nested Do-loops. Therefore, they are
useful for determining data distributions for the whole program fragment.
We show how to integrate data alignment techniques and iteration space tiling
techniques to optimize both data and computation decompositions.

Our approach differs from previous work, which focused on determining the
computation decomposition first, and thus implicitly determining a correspond-
ing data decomposition. This may cause either data arrays to be stored among
PEs in a skewed manner, which violates data layout standards in HPF; or
have different data distributions for different nested Do-loops, which may in-
cur heavy data redistribution cost. In contrast, we focus on data decomposition
first. We start by determining axis alignments for a program fragment, with
consecutive Do-loops within the fragment sharing the same data distribution
scheme. To decide on data decomposition, we rank the “importance” of all data
arrays, and refer to some as dominant. Dominant arrays are those that we do not
want to migrate during the computation. We establish correspondence between
iteration space mapping vectors and distributed dimensions of the dominant
data array in each nested Do-loop. By focusing on such dominant arrays, we
are able to produce novel algorithms for determining data and computation de-
compositions at the same time. Once data distributions are determined, based
on either the owner computes rule or the owner stores rule with respect to the
dominant data array, computation decomposition for each nested Do-loop is de-
termined. If all temporal dependence relations across iteration partitions are
regular, we propose algorithms to find tiling vectors and tile sizes, so that tiles
satisfy the atomic computation constraint. Hence, iterations can be executed
with a coarse-grain pipelining, overlapping the computation and communica-
tion time.

The rest of this article is organized as follows: Section 2 presents necessary
definitions, models, assumptions, and background material. Section 3 presents
an overview of our new method. Section 4 demonstrates the method by an-
alyzing different data distributions for the two-dimensional heat equation.
Section 5 proposes algorithms to determine data and computation decomposi-
tions together. Section 6 illustrates our tiling techniques on DMPCs. Section 7
presents experimental studies. Finally, some concluding remarks are given in
Section 8.

2. DEFINITIONS, MODELS, ASSUMPTIONS, AND BACKGROUND MATERIAL

Grid-connected processors

The abstract target machine we adopt is P , a g -dimensional (g -D) grid of
N1 × N2 × · · · × Ng PEs, g ≥ 1. An individual PE is represented by a tuple
(p1, p2, . . . , pg ), where 0≤ pi ≤ Ni − 1. Such a grid can be embedded into al-
most any common DMPC. For example, a g -D grid can be embedded into a
hypercube using a binary reflected Gray code [Ho 1990]. We assume that the
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abstract target machine is given in advance. For instance, it is known at com-
pile time whether a 1D (or an embedded 1D) or a 2D processor array will be the
target machine. Therefore, g and Ni are known for 1 ≤ i ≤ g .

SPMD model

The parallel program for a grid generated from a sequential program corre-
sponds to the SPMD (Single Program Multiple Data) model, in which each PE
executes the same program but operates on possibly distinct data items [Gupta
and Banerjee 1992a; Hiranandani et al. 1992; Li and Chen 1991a]. More pre-
cisely, in general, a source program has sequential parts and concurrent parts.
Each PE will execute the sequential parts individually, while all the PEs will
execute the concurrent parts jointly, using message passing communication
primitives. In practice, scalar variables and small data arrays used in the pro-
gram are generally replicated in all the PEs to reduce communication, while
large data arrays are partitioned and distributed among PEs. We use the term
“array” to stand for any dimensional array, including a 1D array (vector) or 2D
array (matrix).

Subscripts

In this article, we analyze only those fragments of the program in which the
subscript of every dimension of every array is an affine function of a single
loop control index variable. So a typical subscript will be l + is, where l is an
offset, i is a loop control index variable, and s is a stride. If a subscript is an
affine function of more than one single loop control index variable or a subscript
is a nonlinear function, then either dependence relations are irregular or the
computation cannot be decomposed along a single dimension of the iteration
space except for the innermost loop. We treat it as an irregular or restricted
access pattern on DMPCs, and therefore, we prefer not to distribute that data
dimension, or defer this decision as much as possible.

2.1 Data Distribution

cyclic(b), block, and cyclic data distributions

cyclic(b) distribution is the most general regular distribution, in which blocks
of size b of a 1D data array are distributed among the PEs of a 1D PE array in a
round-robin fashion. For example, let array A(l : u) be indexed from l to u, where
A is a 1D array; or, in general, some specific dimension of a high-dimensional
array. We write here N for N1. Then, under cyclic(b) distribution, the set of
elements A(l + pb : l + pb + b − 1), A(l + (p + N )b : l + (p+N )b+ b − 1),
etc., is stored in pth PE, denoted by PEp. Thus, the xth entry of A is stored in
PEp, where p = b(x− l )/bc mod N . We say that array A is distributed in a cyclic
fashion if b = 1, in a block fashion if b = d(u− l + 1)/Ne, and in a block-cyclic
fashion if 1 < b < d(u− l + 1)/Ne.
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Data decomposition

We now consider the assignment of elements of a k-D data array A, represented
by (a1, a2, . . . , ak), to the elements of a g -D grid P . Since data distributions
for different dimensions of A are independent, we deal with data distribution
for each dimension separately. Let the ith dimension of A be Ai and the j th
dimension of P be Pj . We have the following four cases:

(1) Ai is distributed in cyclic(dbi) along Pj if and only if there exists a function
f Ai of the form

f Ai (x) = b(x − doffseti)/(dbi)c mod Nj ,

where doffseti is an offset, such that if (a1, . . . , ai, . . . , ak) is assigned to
(p1, . . . , pj , . . . , pg ), then pj = f Ai (ai).

(2) Ai is replicated along Pj if and only if any two elements of P of the form
(p1, . . . , pj−1, pj , pj+1, . . . , pg ) and (p1, . . . , pj−1, p′j , pj+1, . . . , pg ) are as-
signed exactly the same elements of A.

(3) Ai is fixed along Pj if and only if for some constant c, every location of P
of the form (p1, . . . , pj−1, pj , pj+1, . . . , pg ), where pj 6= c, is assigned no
elements of A.

(4) Ai is not distributed along any dimension of P .

Thus, if Ai is either distributed, replicated, or fixed along some dimension
of the PE grid, then the data distribution function of the entry Ai(x) is of the
form:

f Ai (x) =
b(x − doffseti)/(dbi)c mod Nmap(Ai ) if Ai is distributed in cyclic(dbi),

R = [0 : Nmap(Ai ) − 1] if Ai is replicated,

constant if Ai is fixed,

where map() is a one-to-one function, 1 ≤ map(Ai) ≤ g , and f Ai (x) returns the
PE index along the dimension map(Ai) of the PE grid in which Ai(x) is stored.
Otherwise, if Ai is not distributed along any dimension of the processor grid,
then f Ai (x) is not defined. From now on, we also use “R” to indicate replication
and “×” to indicate nondistribution.

Since two distinct dimensions of a single data array cannot be distributed
along the same dimension of P , and since each dimension of the data array
can only be distributed along at most one dimension of P , it is possible that
the number of distributed dimensions of a data array is smaller than the di-
mensionality of P . Then, for each of the remaining dimensions of P , we can
specify replication or “fixing.” We use a data-matching vector to specify which
distributed dimensions of the array are mapped to which dimensions of P . For
an (in general multidimensional) array A, a vector PEA of length g is defined
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Fig. 1. Data distributions represented by (A(block, cyclic,×) and PEA(A1, A2)), (B(cyclic(2),×)
and PEB(B1, 0)) or (B(cyclic(2), 0) and PEB(B1, B2)), (C(cyclic,×) and PEC(C1, 1)) or (C(cyclic, 1)
and PEC(C1, C2)), and (D(×) and PED(R, R)) or (D(R) and PED(D1, R)).

by ( j is the position in the vector):

PEA[ j ] =



Ai if the ith dimension of A is distributed, replicated, or
fixed along the j th dimension of P ,

R if no dimension of A is distributed along the j th
dimension of P ; in addition, any two elements of P of
the form (p1, . . . , pj−1, pj , pj+1, . . . , pg ) and (p1, . . . ,
pj−1, p′j , pj+1, . . . , pg ) are assigned exactly the same
elements of A,

constant if no dimension of A is distributed along the j th
dimension of P ; in addition, for a single specific
constant c, every location of P of the form (p1, . . . , pj−1,
pj , pj+1, . . . , pg ), where pj 6= c, is assigned no elements
of A.

See Figure 1 for some examples, where arrays A(0 : 11, 0 : 11, 0 : 11), B(0 : 11,
0 : 11), C(0 : 11, 0 : 11), and D(0 : 11) are distributed in a 3× 3 PE grid P . We
ignore the data-matching vector when there is no risk of confusion, or when P
is a 1D PE array.

In order to specify the relation between the dimensions of the data space and
the dimensions of the iteration space, which will be needed later, for example,
as depicted in Eq. (3) in Section 2.3, we introduce the following representation
of the mapping-relationship when a dimension of A is distributed along some
dimension of P . Define the data space mapping operator for mapping the data
space of a k-D data array A onto a g -D PE grid to be a g ×k matrix DTg×k , such
that

DT ◦ (a1, a2, . . . , ak)T = (p1, p2, . . . , pg )T, (1)

where (a1, a2, . . . , ak) is an index of an element of the k-D data array A,
(p1, p2, . . ., pg ) is an index of a PE in the g -D grid, and, for ease of readability, we
use “◦” to denote matrix/vector multiplication. If for some dimension of A, say
Aφ(ω), is either distributed, replicated, or fixed along the ωth dimension of the
PE grid; then the ωth row of DT is an elementary vector ẽφ(ω) with a functional
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operator f Aφ(ω) (aφ(ω)) in position φ(ω), such that the ωth row has f Aφ(ω) (aφ(ω)) in
position φ(ω) and has 0’s in other positions. Then, we have f Aφ(ω) (aφ(ω)) = pω or R
or c. However, we ignore the relationship when no dimension of A is distributed
along the ωth dimension of the PE grid.

For example, in Figure 1, for mapping the data space of a 3D data array
A(0 : 11, 0 : 11, 0 : 11) onto a 2D 3 × 3 PE grid based on the data distribution
represented by A(block, cyclic,×) and PEA(A1, A2), the data space mapping
operator is

DT2×3 =
( b(dpar1)/4c 0 0

0 ((dpar2) mod 3) 0

)
,

where dpar1 and dpar2 are input parameters of the data space.

The dominant data array in a nested Do-loop

On DMPCs, data distributions of all data arrays have to be determined for
the entire computation before the execution starts. The same holds for the
computation distributions of all the iterations in the nested Do-loops. Of course,
if an iteration is assigned to a PE, the data for this iteration must be in that PE
during the execution of the iteration. Ideally, the distributions are such that the
computational load is balanced and there is no redistribution (migration) of data
during the computation. This is in general not possible, and therefore we try
to minimize migration of data by finding those data arrays that are accessed
the most often (later referred to as “dominant”) and try not to change their
assignment for as large fragments of computation as possible, while following
either the “owner computes” rule or the “owner stores” rule, so that when they
are accessed during the fragments, they, and other “related” arrays are in the
PEs that need to access them. (We briefly discuss the owner computes and
owner stores rules later in Section 2.3.)

A program may include generated-and-used arrays, which induce temporal
dependence relations, write-only arrays, read-only arrays, and privatization ar-
rays, which are only seen within a Do-loop. In each Do-Loop, we rank data arrays
in a decreasing order according to this characteristic: generated-and-used >

write-only > read-only > privatization; data arrays of equal characteristic are
ranked by decreasing dimensionality; data arrays of equal characteristic and
dimensionality are ranked by decreasing frequency of being generated and/or
used in Do-loops.

We pick one of the highest ranked arrays and choose it as the dominant array
(in the Do-Loop). Its distribution will be decided first and it will influence the
decomposition of the computation (partitioning of the iteration space). Other
data arrays will be distributed based on their alignment with the dominant
array. The dominant array has the largest volume of accessed data. It is better
not to migrate it to avoid excessive data communication.

Axis alignment

The axis alignment technique was introduced in Li and Chen [1991b], and
further developed in, for example, Gupta and Banerjee [1992a] and Lee [1997].
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We briefly describe it here so we can present our results, and for completeness
include a more detailed description in the Appendix.

Data distributions are based on the alignment relations among compo-
nents of arrays. Two dimensions, each from a different array, have an affinity
relation if the two subscripts of these two dimensions are affine functions of the
same (single) loop control index variable of a Do-loop. It is advantageous for
these two dimensions of the two arrays to be aligned with each other, to avoid
communication.

For an example, consider the program in Figure 2(a). The first dimension
of u is aligned with the second dimension of q because subscripts of these two
dimensions are affine functions ( j and j − 1) of the same (single) innermost
loop control index variable j , and the second dimension of u is aligned with
the first dimension of q because subscripts of these two dimensions are affine
functions (i and i − 1) of the same outermost loop control index variable i.
Figure 2(b) shows the component affinity graph of the program, where q1 and u1
represent the first dimension of arrays q and u, respectively; q2 and u2 represent
the second dimension of arrays q and u, respectively. Suppose that the target
machine is a linear PE array of N = 3 PEs and the problem size is m = 6.
Figure 2(c) shows data layouts of arrays q and u under a well-aligned data
distribution scheme: q(block,×) and u(×, block). It is easily seen that, during
the computation, communication is required only to access read-only, boundary
data from neighboring PEs. Figure 2(d) shows data layouts of arrays q and u
under a not-aligned data distribution scheme: q(block,×) and u(block,×). Also,
it is easily seen that, during the computation, data re-organization accesses
among PEs are needed for performing a transpose operation.

In the Appendix, we describe how to construct component affinity graphs and
how to determine axis alignment, using a standard approach. For example, in
Figure 2(a), suppose that the dominant data array is u in this nested Do-loop,
as in other parts of programs not shown here u is “more important” than q.
The corresponding component affinity graph of the nested Do-loop is shown
in Figure 2(b). Each edge needs to be assigned a weight. However, we do not
discuss weights here; for this, see Gupta and Banerjee [1992a, 1992b, 1994], Lee
[1997], and Li and Chen [1990, 1991a, 1991b]. The bold, dashed-line partitions
array dimensions into two groups by the component alignment algorithm, so
that dimensions among arrays in each group are aligned with one another. For
instance, the first dimension of q is aligned with the second dimension of u and
the second dimension of q is aligned with the first dimension of u.

2.2 Temporal Vectors and Spatial Vectors

In this section, we discuss dependence relations between the iteration space
and the data space.

Iteration space of a depth-n nested Do-loop

Each iteration in a depth-n nested Do-loop can be represented by an n-tuple
(i1, i2, . . . , in), where the value i j is within the range of the level- j Do-loop.
The iteration space of a depth-n nested Do-loop is the union of all its iterations.
We will denote that space by I. When it is useful to indicate n, the depth of the
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Fig. 2. (a) A depth-two nested Do-loop, (b) component affinity graph representing alignment re-
lations among dimensions of arrays q and u. When the problem size m = 6 and the number
of PEs N = 3, data layouts of arrays q and u under data distribution schema: (c) q(block,×)
and u(×, block), (d) q(block,×) and u(block,×). Cases when iteration space mapping vectors:
(e) iv = (1, 0) and (f) iv = (0, 1).

Do-loop, we will write I (n). For example, the iteration space of the depth-two
nested Do-loop in Figure 2(a) is I (2) = {(i, j ) | 1 ≤ i, j ≤ m}.

Temporal dependence vectors and temporal use vectors

In the iteration space of a nested Do-loop, each array variable may appear
once, twice, or more times, resulting in its traces among the iteration space. If
an array variable is first generated in some iteration α and then it is used in
another iteration β, this induces one temporal dependence vector d = β−α. If an
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array variable is used in different iterations α and β, this induces one temporal
use vector d = β−α. We use du to represent a temporal dependence vector and
d r

u to represent a temporal use vector, both for array u. (Superscript “r” stands
for “read-only”.) For example, in Figure 2(a), the pair 〈q(i, j ), q(i, j −1)〉 induces
one temporal dependence vector dq = (0, 1) and the pair 〈u( j , i), u( j , i − 1)〉
induces one temporal use vector d r

u = (1, 0), both in the iteration space I (2).
Note that, the meaning of a temporal dependence vector is the same as a

data dependence vector; the meaning of a temporal use vector is the same
as an input dependence vector [Wolfe 1996; Zima and Chapman 1990]. We
use the phrases “temporal vectors” and “spatial vectors,” which we introduce
next, as we feel they better match the intuition guiding our approach. One of
the referees pointed out that temporal dependences are normally just called
“dependences.” We add the adjective “temporal” to distinguish them from “spa-
tial” dependences. The referee also pointed out that Kandemir and Ramanujam
[2000] independently presented other data relation vectors similar to spatial
vectors in this article.

In this article, we are especially interested in considering nested Do-loops
with constant (i.e., regular) temporal dependence vectors, known as uniform
dependence algorithms [Lee and Kedem 1990a; Shang and Fortes 1992; Xue
1997], as they will, at most, incur shift communications between neighboring
PEs. For cases when some temporal dependence vector dv is not constant (i.e.,
irregular), if the degree of parallelism is still greater than the dimension of the
processor grid, to avoid irregular communication, we have to find a set of g
iteration space mapping vectors IV (which we will introduce later), where g is
the dimension of the target PE grid, so that IV · (dv)T = constant; otherwise, we
have to use some relatively more expensive message-passing communication
primitives to fetch and store data, such as broadcast, reduction, and scatter and
gather by an inspector-executor technique [Wu 1995; Wu et al. 1995], which
definitely will degrade the benefit of parallelism.

Spatial dependence vectors and spatial use vectors

Focusing on data arrays, we are interested in whether different variables in
the same dimension are accessed simultaneously in the same iteration. For
example, if u( j , i) and u( j , i − 5) both appear in the loop body of an iteration,
we associate with u a spatial vector (0, c), where c is a penalty and is defined
in Table I. We say that all pairs u( j , i) and u( j , i − 5) are located at a constant
distance (0, 5) for all indices i and j defined in the iteration space, because
the difference in the first dimension is j − j = 0 and the difference in the
second dimension is i − (i − 5) = 5. This indicates that for the same value
( j ) of the first dimension, several elements located at a constant distance with
different subscripts in the second dimension will be accessed while performing
an iteration.

Spatial vectors allow us to decide which dimension of an array should be fixed
in PEs so that communication is not incurred. It is especially convenient to use
spatial vectors when there is no nontrivial temporal vector or when temporal
vectors are irregular. For example, the pair 〈A(i, k), A(k, k)〉 for i > k, arising
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Table I. Six Different Penalties {0, c1, c2, c3, c4, c5} for Different Ranks of
Communication Overhead Based on Two Subscripts of the Same Data

Array Dimension of a Pair of Occurrences of the Same Data Array, if that
Data Array Dimension is Distributed

Penalty
Subscripts Communication Dependence Use

f (i) f (i) no 0 0
f (i) f (i)− c shift c2 c1
f (i) c broadcast c4 c3
c f (i) reduction c4 c3

f (i) unknown gather c5 c3
unknown f (i) scatter c5 c3

f1(i) f2( j ) many-to-many-multicast c5 c3

Note: i and j are loop control index variables; f (i) is an affine function of the form
a ∗ i+ b; f1(i) and f2( j ) are functions of i and j , respectively; c is a constant at compile
time; and “unknown” means that the value is unknown at compile time. We use “message
no. (message length)” to represent each penalty based on a 2D data array generated or
used in a depth-two nested Do-loop. Then, c1 = 1(m), c2 = N (m), c3 = N (m2/N ),
c4 = m log N (m/N ), c5 = mN (m/N ), and 0 < c1 < c2 < c3 < c4 < c5, where m is the
size in each data array dimension, N is the number of PEs, and a block distribution is
adopted for the data array.

from Gaussian elimination with partial pivot, incurs a broadcast operation that
cannot be represented by a constant number of temporal vectors. But it is easy
to use one spatial use vector (c3, 0), where c3 is a penalty and will be defined
in Table I, to indicate that it is better not to distribute array A along the first
dimension in order to avoid communication overhead due to irregular data
accesses. Note that, a symbolic array variable which appears in the program is
called an array occurrence. For example, A(i, k) and A(k, k) are two occurrences
of array A.

Formally, we say that a pair of data array occurrences induces a spatial de-
pendence vector if one occurrence is on the left-hand side (LHS) and the other
occurrence is on the right-hand side (RHS) and they induce one temporal de-
pendence vector; it induces a spatial use vector if both occurrences are on the
RHS or if one occurrence is on the LHS and the other occurrence is on the RHS
but they do not induce any temporal dependence vector.

For a spatial vector, we use six penalties {0, c1, c2, c3, c4, c5} to represent six
different ranks (gaps) of communication overhead incurred along a data di-
mension, if that data dimension is distributed, depending on whether access
patterns are “regular” or “irregular” and on “dependence” or “use” characteris-
tics, as shown in Table I, where 0 < c1 < c2 < c3 < c4 < c5 and c1 through c5
are different ranks of communication overhead due to a 2D data array which
is generated or used in a depth-two nested Do-loop. We assume that m is the
problem size for the data array, N is the number of PEs, and the data array is
distributed among PEs in a block fashion. The meaning of these six penalties
is as follows:

(1) For a spatial dependence or use vector, if two subscripts of the same
ωth dimension of the pair of occurrences are the same, then the penalty
in position ω of the spatial vector is 0, which means that this will not
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incur communication based on either the owner computes rule or the owner
stores rule.

(2) For a spatial use vector, if the difference of these two subscripts of the same
ωth dimension is a constant, then the penalty in position ω of the spatial
vector is bounded by c1, representing 1(m), one message of length O(m),
which means that this will at most incur a shift communication for read-
only data before the depth-two nested Do-loop.

(3) For a spatial dependence vector, if the difference of these two subscripts of
the same ωth dimension is a constant, then the penalty in position ω of the
spatial vector is bounded by c2, representing N (m), N messages of length
O(m) each, which means that this will at most incur a shift communication
for generated-and-used data for each of the N PEs in sequence.

(4) For a spatial use vector, if the difference of these two subscripts of the
same ωth dimension is not a constant, then the penalty in position ω of
the spatial vector is bounded by c3, representing N (m2/N ), N messages
of length m2/N each, which means that a compiler can arrange a “many-
to-many-multicast” aggregate communication primitive for read-only data
before the depth-two nested Do-loop. This case includes idioms such as
broadcast, reduction, affine transformation, and other complex subscripts
which result in replicating data in each PE.

(5) For a spatial dependence vector, if the difference of these two subscripts
of the same ωth dimension is not a constant but the access pattern can
be identified at compile time, then the penalty in position ω of the spatial
vector is bounded by c4, representing m log N (m/N ), m log N messages of
length m/N each, which means that a compiler can arrange an aggregate
communication primitive which is equivalent to log N shift operations for
generated-and-used data for each iteration of a loop. This case includes
idioms such as broadcast or reduction or butterfly exchanges for data along
one data dimension.

(6) For a spatial dependence vector, if the difference of these two subscripts of
the same ωth dimension is not a constant and the access pattern cannot be
determined at compile time, then the penalty in position ω of the spatial
vector is bounded by c5, representing mN (m/N ), mN messages of length
m/N each, which means that the access pattern only can be determined
at run time by an expensive inspector-executor based scatter and gather
communication primitive for generated-and-used data for each iteration of
a loop. This case includes subscripts being array elements (indirect mem-
ory access), two subscripts involving different loop control index variables,
and other complex subscripts such as nonlinear subscripts or a subscript
comprising in more than one loop control index variable.

We use su to represent a spatial dependence vector and sru to represent
a spatial use vector, both for array u. For example, in Figure 2(a), the pair
〈q(i, j ), q(i, j − 1)〉 induces one spatial dependence vector sq = (0, c2) for array
q and the pair 〈u( j , i), u( j , i − 1)〉 induces one spatial use vector sru = (0, c1) for
array u.
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Fig. 3. (a) A depth-three nested Do-loop and (b) a program fragment containing two nested
Do-loops.

Note that the estimated overhead of communication primitives has been de-
termined elsewhere. In Gupta and Banerjee [1992a, 1992b, 1994], Lee [1997],
and Li Chen [1990, 1991a], communication cost was estimated, based on the
assumption that an array A (LHS array) uses values of an array B or A itself
(RHS array), where A and B are different. However, in Table I, the communica-
tion cost is estimated based on two subscripts of the same data array dimension.
This communication cost is used to determine the data distribution of a dom-
inant data array, which we will introduce in Section 5. Other data arrays will
then align with this dominant data array.

It is instructive to compare the overhead of communication primitives listed
in Table I to the overhead by a matrix transposition, which is frequently used
for data redistribution. A matrix transposition can be done either by a (log N )-
step cascade-sum technique [Fox et al. 1988], using log N messages of length
m2/2N each (represented by log N (m2/2N )), or by an ad hoc method, using N
messages of length m2/N 2 each (represented by N (m2/N 2)). The communica-
tion cost of several N shift operations is smaller than the communication cost
of a matrix transposition, while the communication cost of several N or log N
other aggregate communication operations in the remaining set plus separate
small-size computations among them is more expensive than that of a matrix
transposition plus the total computations. (As before, m is the problem size and
N is the number of PEs.) Therefore, we will treat a shift communication primi-
tive as an inexpensive operation and other aggregate communication primitives
as expensive operations. Incidentally, shift operations are due to regular depen-
dence/use relations and other communication operations are due to irregular
dependence/use relations.

The respective roles of temporal and spatial vectors

Temporal vectors and spatial vectors and their implications are quite different.
Temporal vectors come from data dependence/use relations among the itera-
tion space of a single nested Do-loop. Therefore, they are useful for determining
computation decomposition for that specific Do-loop. Spatial vectors come from
data dependence/use relations among the data space of data arrays within a
program fragment, which possibly includes several nested Do-loops. Therefore,
they are useful for determining data distributions for the whole program frag-
ment. For example, Figure 3(a) shows a depth-three nested Do-loop program in
which the pair 〈A(i, j ), A(k, j )〉 induces two irregular temporal dependence vec-
tors dA = {(0, 0, γ ), (1, 0,−δ)}, where 0 ≤ γ , δ < m; and also induces one spatial
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Fig. 4. (a) The original Do-loop. (b) Two Do-loops after loop fission.

dependence vector sA = (c5, 0). During computation decomposition, in order to
avoid communication among PEs due to temporal dependence relations, we
distribute the iteration space of the nested Do-loop along its second dimension
among PEs. As values in the second dimension of all temporal dependence vec-
tors are all zeros, there is no dependence relation along the second dimension
in the iteration space. During data decomposition of array A, we distribute the
data space of A along its second dimension among PEs. As the value in the
second dimension of the spatial dependence vector is zero, subscripts of data
occurrences appearing in each iteration have the same single value along the
second dimension of the data space. Therefore, the distribution of data space
along the second dimension will not incur communication.

Spatial vectors can help determine a quick and good solution for data distri-
bution. Figure 3(b) shows a program fragment, which contains two Do-loops.
There are no temporal dependence relations within this program fragment;
however, there is a spatial use vector sr

A = (c3, 0) due to the pair 〈A(m, i), A(i, i)〉
for i ≤ m. Of course, computation decompositions for these two Do-loops cannot
be determined based on the nonexistent temporal dependence relation. How-
ever, based on the spatial use vector sr

A = (c3, 0), we can decide to distribute
array A along its second dimension. Then, based on the owner computes rule,
the iteration space of the first Do-loop is decomposed along its first dimension.

Relevant dependence relations

Temporal dependence relations influence parallelism, while spatial dependence
relations influence data distribution. Unrelated dependence relations will de-
grade parallelism and increase communication. For example, in Figure 4(a), a
Do-loop contains two statements, which have no relation, but they induce two
pairs of temporal/spatial dependence vectors dA = (1, 0), sA = (c2, 0), dB = (0, 1)
and sB = (0, c2). Because (1, 0) and (0, 1) are a set of basis vectors, which span
the iteration space, this prevents finding a communication-free solution.

However, we can apply a loop fission technique in a preprocessing step ac-
cording to the data dependence graph among statements [Allen and Kennedy
1987], to make the original program more amenable to parallel execution.
In Figure 4(b), the original Do-loop is fissured into two Do-loops. Now each
Do-loop induces only one temporal/spatial dependence vector, and therefore
we can determine a data distribution scheme for A(×, block) and B(block,×)
so that based on the owner computes rule the execution in both Do-loops are
communication-free.
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2.3 The Relation between Data and Computation Decompositions

In this section, we discuss the relation between data and computation decompo-
sitions. Computation decomposition has a representation similar to that of data
decomposition. As we are really interested in matching dimensions of the data
space with dimensions of the iteration space, we will omit the implementation
details of the PE-iteration matching vector, which are similar to the PE data-
matching vector, see Section 2.1. Note, that in general, the formalism below is
similar to that of Section 2.1.

Computation decomposition

In the iteration space I (n) of a depth-n nested Do-loop, iterations in each di-
mension are distributed independently in cyclic(b), replicated, fixed, or not-
distributed fashions. Let the j th dimension of the iteration space be I j . Iter-
ations along every iteration space dimension I j either will be distributed or
replicated or fixed along a unique dimension of the g -D PE grid P , or will not
be distributed. The iteration distribution function of the entry I j ( y) is of the
form

f I j ( y) =
b( y − ioffset j )/(ib j )c mod Nmap(I j ) if I j is distributed in cyclic(ib j ),

R = [0 : Nmap(I j ) − 1] if I j is replicated,

constant if I j is fixed,

where ioffset j is an offset, map() is a one-to-one function, 1 ≤ map(I j ) ≤ g , and
f I j ( y) returns the PE index along the dimension map(I j ) of the PE grid where
I j ( y) is stored. Otherwise, if I j is not distributed along any dimension of the
processor grid, f I j ( y) is not defined.

In order to specify the relation between the dimensions of the data space and
the dimensions of the iteration space as depicted in Eq. (3) later, we introduce
the following representation of the mapping-relationship when a dimension
of the iteration space is distributed along some dimension of P . Define the
iteration space mapping operator for mapping the iteration space of a depth-n
nested Do-loop onto a g -D PE grid to be a g × n matrix ITg×n, such that

IT ◦ (i1, i2, . . . , in)T = (p1, p2, . . . , pg )T, (2)

where (i1, i2, . . . , in) is an index of an iteration of the depth-n nested Do-loop,
(p1, p2, . . . , pg ) is an index of a PE on the g -D grid, and, as before, “◦” denotes
matrix/vector multiplication. If for some dimension of the iteration space, say
Iψ(ω), is either distributed, or replicated, or fixed along the ωth dimension of the
PE grid; then the ωth row of IT is an elementary vector ẽψ(ω) with a functional
operator f Iψ(ω) (iψ(ω)) in position ψ(ω), such that the ωth row has f Iψ(ω) (iψ(ω)) in
position ψ(ω) and has 0’s in other positions. Then, we have f Iψ(ω) (iψ(ω)) = pω or R
or c. We ignore the relationship when no dimension of I (n) is distributed along
the ωth dimension of the PE grid.
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The relation between data and computation decompositions

Consider some iteration (i1, i2, . . . , in) of a Do-loop. Assume that in this itera-
tion, the dominant k-D data array is generated or used, so that the subscript
for each dimension j is an affine function of some single loop control index vari-
able ix( j ). From Eqs. (1) and (2), we want to match both data and computation
decompositions, such that

DT ◦ (af1
(
ix(1)

)
, af2

(
ix(2)

)
, . . . , afk

(
ix(k)

))T = IT ◦ (i1, i2, . . . , in
)T, (3)

where af j (ix( j )) is an affine function of a loop control index variable ix( j ) ap-
pearing in the j th position of the subscript of the data array variable. More
precisely, suppose that the ωth row of DTg×k is ẽk

φ(ω) with a functional operator
f Aφ(ω) (aφ(ω)) in position φ(ω), where ek

φ(ω) is the φ(ω)th elementary vector of the
k-D data space. If the subscript of the φ(ω)th dimension of the data array in-
volves only the level-x(φ(ω)) loop control index variable ix(φ(ω)), then the ωth row
of ITg×n is ẽn

x(φ(ω)) with a functional operator f Ix(φ(ω)) (ix(φ(ω))) in position x(φ(ω)),
where en

x(φ(ω)) is the x(φ(ω))th elementary vector of the n-D iteration space. In
this case, we say that there is a correspondence between the φ(ω)th dimension of
a k-D data array A and the x(φ(ω))th elementary vector in the iteration space of
a depth-n nested Do-loop. Also let afφ(ω)(ix(φ(ω))) = l + (ix(φ(ω)))s. Then the block
size dbφ(ω) of the data distribution function and the block size ibx(φ(ω)) of the
iteration distribution function satisfy dbφ(ω) = s(ibx(φ(ω))).

For example, based on the data distribution q(block,×), DT1×2 = (b(dpar)/2c,
0), and IT1×2 = (b(ipar)/2c, 0); where dpar is an input parameter of the data
space and ipar is an input parameter of the iteration space, as shown in
Figure 2(c) and Figure 2(e). This holds since the subscripts of the first dimen-
sion of q involve only the outermost loop control index variable i. Based on the
data distribution u(×, block), DT1×2 = (0, b(dpar)/2c) and IT1×2 = (b(ipar)/2c, 0)
as shown in Figure 2(c) and Figure 2(e), because the subscripts of the sec-
ond dimension of u only involve the outermost loop control index variable
i. Based on the data distribution u(block,×), DT1×2 = (b(dpar)/2c, 0) and
IT1×2 = (0, b(ipar)/2c) as shown in Figure 2(d) and Figure 2(f), because the
subscripts of the first dimension of u only involve the innermost loop control
index variable j .

Iteration space mapping vectors

Since we can use any normal vector to represent a set of parallel hyperplanes,
we use the elementary vector en

x(φ(ω)), which has 1 in position x(φ(ω)) and has 0’s
in other positions, to represent ẽn

x(φ(ω)) with a functional operator f Ix(φ(ω)) (ix(φ(ω)))
in position x(φ(ω)). Therefore, we say that we want to find g iteration space
mapping vectors, which are g elementary vectors corresponding to the g rows
in ITg×n. For example, Figure 2(e) shows the temporal dependence relations
in the iteration space, which is partitioned by the iteration space mapping
hyperplanes i = c, whose normal vector (the iteration space mapping vector)
is iv = e1 = (1, 0). Figure 2(f) shows that the iteration space is partitioned
by the iteration space mapping hyperplanes j = c, whose normal vector is
iv = e2 = (0, 1).
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Iteration scheduling

After partitioning the iterations among PEs, we still need to schedule the it-
erations in each individual PE. The global schedule has to satisfy dependence
constraints. We later attempt to produce schedule with the goal of minimizing
execution time, accounting for both computation and communication costs.

Owner computes rule and owner stores rule

If iteration space mapping vectors are determined based on the data distribu-
tion of the LHS array, we say that the iteration scheduling is based on the owner
computes rule. If iteration space mapping vectors are determined on the basis
of the data distribution of a RHS array, we say that the iteration scheduling
is based on the owner stores rule. If the LHS array and the RHS arrays are
aligned well, then both under the owner computes rule and the owner stores
rule, communication overhead incurred is not significant. However, if the LHS
array and some RHS arrays are not aligned well, then whether we use the owner
computes rule or the owner stores rule, significant communication cannot be
avoided. We use the owner computes rule or the owner stores rule depending
on whether we prefer not to move data elements of (the dominant data array
which possibly is) the LHS array or a specific RHS array, in order to minimize
communication.

We continue with the example in Figure 2. Consider the data distribution
scheme: q(block,×) and u(×, block), as shown in Figure 2(c). Suppose that
the iteration space mapping vector iv is chosen based on the data distribution
q(block,×) of the LHS array q. Thus, the computation decomposition is based
on the owner computes rule. Since the subscripts of the first dimension of q
involve only the outermost loop control index variable i, the iteration space
mapping vector iv is thus (1, 0) as shown in Figure 2(e). But if the iteration space
mapping vector iv is chosen based on the data distribution u(×, block), where
u is a RHS array, the computation decomposition is based on the owner stores
rule. Since the subscripts of the second dimension of u also involve only the
outermost loop control index variable i, the iteration space mapping vector iv
is also (1, 0). This means that under iteration space mapping vector iv = (1, 0),
all elements of arrays q and u are stored in local memory. Therefore, under this
well-aligned data distribution scheme, both under the owner computes rule and
the owner stores rule, the same good result is obtained.

We now consider the other not-aligned data distribution scheme: q(block,×)
and u(block,×), as shown in Figure 2(d). Suppose that the iteration space map-
ping vector iv is chosen based on the data distribution q(block,×) of the LHS
array q. As seen above, under the owner computes rule, the iteration space
mapping vector is iv = (1, 0). Under this computation decomposition, elements
of array q are stored in local memory; however, elements of array u are not. We
have to perform a transpose operation to fetch elements of array u before the
computation.

Suppose that the iteration space mapping vector iv is chosen based on the
data distribution u(block,×), where u is a RHS array. Thus, the computation
decomposition is based on the owner stores rule. Since the subscripts of the
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first dimension of u involve only the innermost loop control index variable j ,
the iteration space mapping vector iv is (0, 1) as shown in Figure 2(f). Under
this computation decomposition, elements of array u are stored in local memory;
however, elements of array q are not. Before the computation, PEp has to wait
for data generated by its neighboring PEp−1, for all p > 0, due to the temporal
dependence on q. After the computation, if q(i, j ) will be used again later, a
transpose operation is needed to send elements q(i, j ) to PEs according to the
data distribution of array q. Therefore, under this not-aligned data distribution
scheme, whether we use the owner computes rule or the owner stores rule,
significant communication cannot be avoided.

3. AN OVERVIEW OF THE NEW METHOD

As seen in Section 2.3, if the subscript of each dimension of a data array is an
affine function of a single loop control index variable, then each iteration space
mapping vector corresponds to a dimension of data array which is distributed.
Therefore, the problem of determining data distributions for all data arrays
is reduced to the problem of finding a set of iteration space mapping vectors.
They are based on either the owner computes rule or the owner stores rule,
following the data distribution of the dominant data array in each Do-loop. The
complete procedure from determining data and computation decompositions to
performing computation consists of four steps, among them, the second step is
an alignment phase and the third and fourth steps comprise in a distribution
phase.

Step 1. We apply the loop fission techniques according to the data dependence
graph among statements [Allen and Kennedy 1987], to make the original
program more amenable to parallel execution.

Step 2. We construct a component affinity graph for each Do-loop, and then we
apply the dynamic programming algorithm for axis alignments to decide
whether data realignment is needed between adjacent program fragments
[Lee 1997]. After that, all Do-loops in a program fragment will share a static
data distribution scheme.

Step 3. We find a data distribution scheme for each program fragment. In each
program fragment, we first determine a static data distribution scheme for
some of the dominant generated-and-used data arrays based on finding
iteration space mapping vectors from some of the most computationally-
intensive nested Do-loops, in which these data arrays are generated or used.
After that, based on alignment relations, a static data distribution scheme
is determined for all data arrays throughout all Do-loops in each program
fragment. (A detailed algorithm is given in Section 5, while an example is
presented in Section 4.)

Step 4. For the computation in each Do-loop, based on the owner computes rule
or the owner stores rule, we find the corresponding iteration space mapping
vectors from the data distribution of a target (the dominant) data array. If
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communication cannot be avoided due to regular temporal dependences,
we find tiling vectors and determine tile sizes so that iterations can be
executed in a coarse-grain pipelining fashion. Otherwise, if the computation
only induces temporal use vectors, then there can be a communication-free
computation decomposition, provided that we can replicate the required
remote read-only data. (A detailed algorithm is given in Section 6, while an
example is presented in Section 4.)

An algorithm to perform Step 1

In the following, we briefly describe the algorithm for performing loop fission.
The structure of Do-loops in a general program can be treated as a tree or a for-
est, in which assignment statements are leaves and Do statements are internal
nodes. We assume that statements within each Do-loop have been topologically
sorted according to dependence precedences among statements in a prepro-
cessing step. Loop fission, which is based on the dependence level of a Do-loop
to detect whether each level- j Do-loop is parallel or not, was proposed for
vectorization [Allen and Kennedy 1987]. But even for the case when some
level- j Do-loops are sequential, if temporal dependence vectors are regular,
we can exploit parallelism using tiling techniques. In addition, as mentioned in
Section 2.2, loop fission can separate unrelated dependences in a Do-loop and
thus potentially can investigate more parallelism. Furthermore, after loop fis-
sion, we can easily generate aggregate message-passing communication primi-
tives before the outermost loop which does not induce dependence relations for
read-only data. In this article, we apply loop fission to identify the execution
order of nested Do-loops in sequence.

If a Do-loop contains assignment statements and other Do-loops, we apply
loop fission techniques top-down as follows. Suppose that dependence relations
among all k children of a parent induce k′ strongly connected components. If
k′ > 1, we apply loop fission for the parent Do-loop. Now the grandparent loses
one child but gains k′ children. After that, we recursively deal with each of
k′ children. If k′ = 1, we do not apply loop fission for the parent Do-loop, but
recursively deal with each of k children.

An algorithm to perform Step 2

We follow the tree-structure of Do-loops, obtained in Step 1. We apply a
dynamic programming algorithm bottom-up to decide whether consecutive
Do-loops can share the same data distribution scheme as follows. Based on
axis alignments, we construct a component affinity graph for each Do-loop and
various component affinity graphs for consecutive Do-loops. We heuristically
determine whether data redistribution is needed between adjacent program
fragments. If it is better for children Do-loops to use different data distri-
bution schemes, we do not proceed to the parent Do-loop. If it is better for
them to share a static data distribution scheme, the parent Do-loop will adopt
this static scheme. We repeatedly check whether the parent’s and its siblings
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Do-loops can share a static distribution scheme, proceeding up to the root if
possible [Lee 1997].

4. A RUNNING EXAMPLE OF COMPUTING THE 2D HEAT EQUATION

To provide the reader with the intuition helpful to the understanding of the
method used in determining data and computation decomposition, we use a
complete example: solving the 2D heat equation on a linear processor array
with N PEs and on a 2D processor grid with N ×N PEs. This nontrivial exam-
ple illustrates a trade-off among parallelism, data storage used, and communi-
cation overhead. If we want to maximize parallelism, then array expansion is
necessary. If we want to minimize space, then privatization arrays can be used;
however, a matrix transpose operation is necessary. If we can only decompose
the outer loop, then privatization arrays can be used and again a matrix trans-
pose operation is necessary. If we can also decompose the inner loop, then array
expansion is necessary; however, we can use shift operations only, avoiding a
matrix transpose.

Consider the program in Figure 5(a), which solves a 2D heat equation using
the alternating direction implicit (ADI) method, which reduces two-dimensional
problems to a succession of one-dimensional problems. The domain of the par-
tial differential equation ut = b1uxx + b2uy y is the unit square. We used the
Peaceman—Rachford algorithm to formulate the numerical solution of the par-
tial differential equation as a second-order approximation by solving two sets
of tridiagonal systems of linear equations. The variables of the first set of tridi-
agonal systems correspond to elements from each column of an intermediate
matrix, and the variables of the second set of tridiagonal systems correspond
to elements from each row of a target matrix [Strikwerda 1989]. Using the
Thomas algorithm, we reduce a tridiagonal system of linear equations to three
sets of first-order recurrence equations.

In the program, lines 1 and 2 define two functions; line 3 defines the size
of the arrays used in the program; lines 4 through 8 define scalar variables;
lines 9 through 12 set initial values for u(i, j ); and lines 13 through 38 form the
computation kernel, in which lines 14 through 25 perform a column sweep and
lines 26 through 37 perform a row sweep.

We perform Step 1 by applying loop fission to the source program. Figure 5(b)
shows the structure of Do-loops included in statements from lines 13 through
38 and Figure 5(c) shows the corresponding data dependence graph among
statements, where sk (letter “s” followed by integer k) denotes the statement
in line number k. Due to a dependence cycle from s24 to s32 and from s36
to s20, column sweep and row sweep cannot be executed in parallel. In order
to attempt more parallelism, array expansion is applied for the appropriate
variables. In order to find precise data dependence vectors, we apply loop fission
(loop distribution), and the original program is transformed into a sequence of
nested loops, as shown in Figure 5(d).

We now continue with the example. The 2D arrays p and q are privatization
arrays, which are recomputed in each loop iteration for loop control index i,
and are in fact 1D arrays in a sequential program. However, in order to avoid
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Fig. 5. (a) A version of 2D heat equation program, (b) structure of Do-loops including statements
from lines 13 to 38, (c) data dependence relations among statements, (d) an equivalent program
after loop fission, (e) component affinity graph of lines from 14 to 25, (f) component affinity graph
of lines from 26 to 37.

unnecessary dependences, we apply array expansion to p and q for the analysis
phase. If under an iteration space mapping transformation, p and q do not
induce dependence relations among PEs during the execution, then p and q
can later be recovered as the original two 1D arrays. But if p and q do induce
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Fig. 5. (Continued).

dependence relations among PEs and tiling techniques are used, then p and q
need to be maintained as two dimensional.

One of the referees remarked that the arrays p and q appear in an expanded
form. It would have been appropriate to refer to them as privatized arrays
if they had not been expanded with respect to the “i” loop—we could have
then said that those (1D) arrays are privatized with respect to the “i” loop.
Privatization, array expansion, and loop fission are frequently used in compiling
programs to save data storage or to attempt more parallelism [Adve et al. 1998;
Gupta 1997; Wolfe 1996; Zima and Chapman 1990]. When the parallelism is
not decreased and data locality in local memory is maintained, or when we
do not need additional parallelism, we can recover the original arrays made
by array expansion and the original Do-loops made by loop fission; or we can
even further apply loop fusion and loop interchange to improve data locality for
better cache performance (which is not included in this presentation).

We now perform Step 2 to determine axis alignment for each program frag-
ment. Figure 5(e) shows the component affinity graph of the column sweep
(lines 14 through 25) and the corresponding temporal and spatial vectors. v1
(p1, q1, and u1, respectively) denotes the first dimension and v2 (p2, q2, and
u2, respectively) denotes the second dimension of array v (p, q, and u, re-
spectively). Note that Loops 1 through 4 can share a static data distribution
scheme because axis alignments constraints are satisfied. The bold, dashed line
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partitions the array dimensions into two groups using the component alignment
algorithm, so that array dimensions in each group are aligned with each other.
For instance, the first dimension of v is aligned with the second dimension of
both p and q and with the first dimension of u; the second dimension of v is
aligned with the first dimension of both p and q and with the second dimension
of u.

From Loop 2 in Figure 5(d), we obtain temporal and spatial vectors: d p =
(0, 1), sp = (0, c2), dq = (0, 1), sq = (0, c2), d r

u = (1, 0), and sru = (0, c1); from
Loop 4, we obtain dv = (0,−1) and sv = (c2, 0). (The second component of dv is
negative because the loop control index j is decreasing.)

Figure 5(f) shows the component affinity graph of the row sweep (lines 26
through 37) and the corresponding temporal and spatial vectors. Note that
Loops 5 to 8 can also share a static data distribution scheme because axis align-
ments constraints are satisfied. From Loop 6 in Figure 5(d), we obtain temporal
and spatial vectors: d p= (0, 1), sp= (0, c2), dq = (0, 1), sq = (0, c2), d r

v = (1, 0), and
srv = (c1, 0); from Loop 8, we can obtain du = (0,−1) and su = (0, c2). In the fol-
lowing, we show how to compile this program for a 1D linear processor array
and a 2D processor grid.

4.1 The Target Machine Is a 1D Linear Processor Array

Because all temporal vectors are regular and the dimensionality of data arrays
u and v is 2, we can at least execute iterations for both dimensions in a pipelined
fashion, and therefore, we have two degrees of parallelism. However, the target
machine is one-dimensional, and we have to give up one degree of parallelism.

4.1.1 Different Data Distributions for Column Sweep and Row Sweep. We
first consider the column sweep, and perform Steps 3 and 4 for it. In Step 3,
we determine data distributions for the arrays. In the column sweep, v is a
generated-and-used array, u is a read-only array (although u will be generated
and used in the row sweep), and p and q are privatization arrays (through array
expansion). v is the dominant data array and it is updated in Loop 4. Therefore,
we consider all the temporal dependence vectors and the spatial dependence
vectors arising from this Do-loop. There is one such temporal vector dv = (0,−1)
and one such spatial vector sv = (c2, 0). Because of the spatial vector sv = (c2, 0),
we assign a “c2” to the first dimension of v and a “0” to the second dimension
of v, and write v(c2, 0), indicating that, if the first dimension is distributed,
then this will incur a penalty of c2 for communication overhead, and, if the
second dimension is distributed, then this will not incur any communication
overhead.

Since the subscripts of the second dimension of v involve only the outermost
loop control index variable i, the iteration space mapping vector iv correspond-
ing to the second dimension of v is (1, 0). As iv · dv = (1, 0) · (0,−1) = 0, the
temporal dependence vector dv will not induce communication for iv = (1, 0).
Since the iteration space is rectangular, we choose block distribution for the
second dimension of v. Therefore, following the alignment relations listed in
Figure 5(e), we have the following data distributions (where, as before, “×”
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means “not distributed”):

v(×, block), p(block,×), q(block,×), u(×, block). (4)

We now perform Step 4, examining the actual computation. Consider the
communication cost if we use data distributions listed in (4). First, iterations in
either Loop 1 or Loop 3 do not induce any dependence relations, and therefore
can be executed concurrently in both Do-loops. Second, in Loop 2 u is the dom-
inant data array. Since u is distributed along the second dimension, whose
subscripts involve only the outermost loop control index variable i, the itera-
tion space mapping vector iv for Loop 2 is (1, 0) as illustrated in Figure 6(c).
As iv · d p = 0, iv · dq = 0, and iv · d r

u = (1, 0) · (1, 0) = 1, communications be-
tween neighboring PEs will be needed only for accessing the read-only array u.
To maintain consistent memory access, some parts of u will be replicated, so
that each PE has all the elements of u it needs. See Figure 6(a) for illustration,
where the term, overlap region, is used to indicate such replication. Third, as
discussed above, there is no communication while executing Loop 4. Figure 6(b)
shows data layout of array v and Figure 6(d) shows temporal dependence vec-
tors among iterations in Loop 4. Note that Loops 1 through 4 can be fused, be-
cause the iterations assigned to each PE (whether under the owner computes
or owner stores rule with respect to the dominant data array in each nested
Do-loop) can be executed in sequence without any dependence synchronization
between neighboring PEs, once the PE has received the read-only data from
neighboring PEs.

We now consider the row sweep. The discussion is very similar to that for
the column sweep (though with a different result) and therefore we present it
briefly. We perform Step 3 first. u is a generated-and-used array, v is a read-only
array (although v has been generated and used in the column sweep), and p
and q are privatization arrays. u is the dominant data array, and it is updated
in Loop 8. In this Do-loop, there is one temporal dependence vector du = (0,−1)
and one spatial dependence vector su = (0, c2). Because of su, we get u(0, c2).

The iteration space mapping vector iv corresponding to the first dimension
of u is (1, 0). As iv · du = (1, 0) · (0,−1) = 0, du will not induce communication
for iv = (1, 0). Choosing block distribution for the first dimension of u and
accounting for alignment relations listed in Figure 5(f), we have the following
data distributions for the row sweep:

v(block,×), p(block,×), q(block,×), u(block,×). (5)

We now perform Step 4 and consider the communication overhead for data
distributions listed in (5). First, iterations in either Loop 5 or Loop 7 do not
induce any dependence relations and therefore they can be executed concur-
rently in both Do-loops. Second, in Loop 6, v is the dominant data array. Since
v is distributed along the first dimension, whose subscripts only involve the
outermost loop control index variable i, the iteration space mapping vector iv
for Loop 6 is (1, 0) as illustrated in Figure 7(c). As iv · dp = 0, iv · dq = 0,
and iv · d r

v = (1, 0) · (1, 0) = 1, communication is needed only for accessing
the read-only array v and, as depicted in Figure 7(a), we can use an over-
lap region to maintain a consistent memory access of remote read-only data
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Fig. 6. Data layout based on the schema in formula (4) when Nx = N y = 6 and there are three
PEs. (a) Data layout and the overlap region of array u, (b) data layout of array v, and temporal
dependence among iterations in (c) Loop 2, (d) Loop 4, (e) Loop 6, and (f) Loop 8.

received from neighboring PEs. Third, there is no communication while exe-
cuting Loop 8. Figure 7(b) shows data layout of array u and Figure 7(d) shows
temporal dependence vectors among iterations in Loop 8. Loops 5 to 8 can be
fused.

It is not surprising that the optimal data distribution for the column sweep
is different from the optimal data distribution for the row sweep. If we adopt
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Fig. 7. Data layout based on the schema in formula (5) when Nx = N y = 6 and there are three
PEs. (a) Data layout and the overlap region of array v, (b) data layout of array u, and temporal
dependence among iterations in (c) Loop 6, and (d) Loop 8.

the data distributions listed in (4) and (5) for computing the column sweep
and the row sweep, respectively, then we need to transpose array v from data
distribution scheme listed in (4) to that of listed in (5) and to transpose array u
from data distribution scheme listed in (5) to that of listed in (4). As a transpose
operation is an expensive data reorganization operation, it is important to try
and use a single (static) data distribution to compute both the column sweep and
the row sweep with small communication overhead. We discovered that if all
the temporal dependence vectors are regular, tiling techniques can help do that.

4.1.2 Using Tiling Techniques to Reduce Communication Overhead. Sup-
pose that we choose the static data distribution listed in (4) for both the column
sweep and the row sweep. (The symmetric case when we choose the static data
distribution scheme listed in (5) will lead to a “symmetric” result.) We deal with
Step 4. We have shown that the data distribution in (4) is suitable for computing
the column sweep (Loop 1 through Loop 4). We now study the communication
overhead for computing the row sweep (Loop 5 through Loop 8). First, iterations
in either Loop 5 or Loop 7 do not induce dependence relations, and therefore
can be executed concurrently in both Do-loops.
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Second, in Loop 6, v is the dominant data array. Since array v is distributed
along the second dimension, whose subscripts only involve the innermost loop
control index variable j , the iteration space mapping vector iv for Loop 6 is
(0, 1). Because iv · d p = (0, 1) · (0, 1) = 1, iv · dq = (0, 1) · (0, 1) = 1, and
iv ·d r

v = (0, 1) · (1, 0) = 0, the temporal dependences of p and q will induce com-
munication between neighboring PEs. To avoid sending many small messages
between neighboring PEs, we tile the iteration space. The tiles have to satisfy
the atomic computation constraint, that the dependence relations among tiles
do not induce a cycle. After tiling, each PE executes sequentially all the itera-
tions in a tile, then the PE sends/receives boundary data to/from neighboring
PEs. The next tile can be executed by the PE using coarse grain pipelining.

Here we tile the iteration space using two sets of tiling hyperplanes. The
first is the set of iteration space mapping hyperplanes represented by j = c,
which corresponds to iteration space mapping vector iv = (0, 1). The second is
represented by i = c, which corresponds to the vector (1, 0). See Figure 6(e). We
discuss in detail how to select tiling hyperplanes and tile sizes in Section 6.

Third, in Loop 8, u is the dominant data array. Since array u is distributed
along the second dimension, whose subscripts only involve the innermost loop
control index variable j , the iteration space mapping vector iv for Loop 8 is
(0, 1). As iv · du = (0, 1) · (0,−1) = −1, communication between neighboring
PEs is due to the temporal dependence of u. This case is similar to that of
Loop 6, except that the innermost loop control index j is decreasing. Thus, here
also we can use tiling, as depicted in Figure 6(f).

We have discussed how to use both dynamic and static data distributions
for computing consecutive column and row sweeps. In general, the choice of
whether to use dynamic or static data distribution possibly augmented with
tiling, depends on various parameters, such as the problem size, data redis-
tribution costs, number of PEs, communication cost, and the structure of the
temporal dependence vectors (regular temporal vectors are good for tiling). This
will be discussed further in the article, providing both theoretical and experi-
mental results.

4.2 The Target Machine Is a 2D Processor Grid

Because all temporal vectors are regular and the dimensionality of data arrays
u and v is equal to the dimensionality of the processor grid, which is 2, both
dimensions are distributed as follows:

v(block, block), p(block, block), q(block, block), u(block, block), (6)

where we assume that the first dimension of u and v are distributed along
the first dimension of the processor grid and the second dimension of u and v
are distributed along the second dimension of the processor grid. In addition,
privatization arrays p and q are aligned with u and v.

In the column sweep, this involves temporal dependence vectors dv = (0,−1),
d p = (0, 1), and dq = (0, 1). Because the innermost loop control index variable
j only appears in the subscripts of the first dimension of v, it needs shift op-
erations between east–west connected PEs for updating v. Also, the innermost

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 1, January 2002.



30 • P.-Z. Lee and Z. M. Kedem

loop control index variable j only appears in the subscripts of the second di-
mensions of p and q, where the second dimension of p and q are aligned with
the first dimensions of u and v. Thus, it also needs shift operations between
east–west connected PEs for updating p and q. Next, it involves a spatial use
vector sru = (0, 1); thus, it needs shift operations between south–north connected
PEs for fetching the read-only data array u.

In the row sweep, this involves temporal dependence vectors du = (0,−1),
d p = (0, 1), and dq = (0, 1). Because the innermost loop control index variable
j only appears in the subscripts of the second dimension of u, it needs shift
operations between south–north connected PEs for updating u. Also, the inner-
most loop control index variable j only appears in the subscripts of the second
dimensions of p and q, where the second dimension of p and q are aligned with
the second dimensions of u and v. Thus, it also needs shift operations between
south–north connected PEs for updating p and q. Next, it involves a spatial use
vector srv = (1, 0); thus, it needs shift operations between east–west connected
PEs for fetching the read-only data array v.

5. DETERMINING DATA AND COMPUTATION
DECOMPOSITIONS TOGETHER

This section describes the algorithm for Step 3 (data and computation decom-
positions) of the method outlined in Section 3. We assume that the program has
been partitioned into program fragments as indicated in Step 2 of the proposed
method in Section 3. The algorithm is run independently for each program frag-
ment, so we assume a single program fragment in the following description. We
will decide on data distribution for all generated-and-used arrays (“relevant”
arrays, in the sequel).

We consider a program fragment consisting of one or more nested Do-loops.
We want to find data distribution for one of the highest-dimensional generated-
and-used arrays, in which g dimensions of the data array are to be distributed.
That is, in the most computationally intensive nested Do-loop, which dominates
the total execution time, where the target data array variables are generated
or used, we want to find g iteration space mapping vectors, which correspond to
g dimensions of the target data array, such that all the iterations can be mapped
into the g -D grid with the execution requiring as little communication as possi-
ble. Then according to alignment relations, data distributions for other aligned
data arrays can be determined. If there are still some data arrays, whose data
distributions are not yet determined, we determine the data distribution for one
of the highest-dimensional generated-and-used data arrays from the remaining
data arrays until data distributions for all data arrays are determined.

The core of the algorithm is to specify which dimensions of each data array
are to be distributed. We use eight symbols “c0”, “c1”, “c2”, “c3”, “c4”, “c5”, “

√
”, and

“×”, where we let c0 = 0 for convenience. Each position of the k-tuple vector spec-
ifying the distribution status of each dimension of a k-D data array will contain
exactly one of them in each stage of the algorithm. So, for instance, for a 5-D ar-
ray A, we could have A(c2,

√
, c0, c2,×). The meaning of the symbols is as follows.

“c0”–“c5” indicate the gaps of communication penalties if that data dimension
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is distributed, where c0 = 0 and “c1”–“c5” are defined in Table I. “
√

” indicates
that we have decided to distribute on the dimension and “×” indicates that we
have decided not to distribute on the dimension. For every data array we are
considering, we will start, of course, with all dimensions marked with c0’s. Dur-
ing the execution of the algorithm, “ci” can be replaced by “c j ” for 0 ≤ i < j ≤ 5,
“
√

”, or “×”. When the algorithm terminates, all the dimensions have “
√

” or
“×”. As mentioned in Section 2.1, it is possible that the number of distributed
dimensions (k) of a k-D data array A is smaller than the dimensionality (g ) of
the target g -D grid. Then, for each of the (g − k) remaining dimensions of the
g -D grid, we can specify replication or “fixing.” If the data array A is read-only,
and its replication can reduce the communication overhead, and there is still
enough memory space; then we can specify replication of the data array A along
these (g − k) remaining dimensions of the g -D grid, otherwise, we can specify
“fixing.”

Including privatization arrays, we rank generated-and-used data arrays in
decreasing order. We use a heuristic based on dimensionality of arrays and the
frequency in which their values are generated and used in the Do-loops. Also,
for each generated-and-used data array, we rank all the Do-loops in which
it participates in a decreasing order based on how computationally intensive
they are. Until data distributions for all relevant arrays have been determined,
we repeatedly pick the highest ranked generated-and-used data array, which
we did not consider before and for which its data distribution has not been
completely determined, say A, and execute the steps listed below.

We find the following notation helpful. g (as before) will stand for the dimen-
sionality of the PE grid. |A| will stand for the dimensionality (not the determi-
nant!) of A. |√| denotes the number of

√
’s appearing in the dimensions of A,

etc. Thus, for A(c2,
√

, c0, c2,×), we have |c2| = 2, |c0| = |√| = |×| = 1, and |c1| =
|c3| = |c4| = |c5| = 0. Of course, |c0|+ |c1|+ |c2|+ |c3|+ |c4|+ |c5|+ |√|+ |×| = |A|
at every stage of the algorithm.

Substep 1

Action: Pick the most computationally intensive Do-loop in which A is gen-
erated or used and that has not been considered before while A was being
considered. We reset to c0’s the symbols on dimensions that are not yet deter-
mined to be “

√
” or “×,” and then we replace some c0’s by c j ’s for 1 ≤ j ≤ 5

as follows. We find all spatial dependence/use vectors of A induced from this
Do-loop. For each such vector, if its kth component is c j and the kth dimension
of A originally is assigned a “ci” for 0 ≤ i < j ≤ 5, then we put a “c j ” in the kth
dimension of A.

Explanation: The condition implies that different elements (positions) of A
in the kth dimension will appear in the same iteration. If the kth dimension is
distributed, the highest gap of communication penalty can be determined from
its spatial vectors.

Substep 2

In the general case, all eight symbols can appear in the dimensions of A
(though the first time we reach this step, only ci ’s for 0 ≤ i ≤ 5, appear). If
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|√|= g , we are done as we have made final decisions for all dimensions of A.
Otherwise, we are not done and of course, |√| < g .

We define six candidate sets of dimensions, S0, S1, S2, S3, S4, and S5, where
Si ∩ Sj = ∅ for 0 ≤ i < j ≤ 5. Si will contain all dimensions that have been
marked with ci ’s for 0 ≤ i ≤ 5. Let |Si| be the cardinality of Si and let r ≥ 0
be the smallest value such that

∑r
i=0 |Si| ≥ g − |√|. If

∑r
i=1 |Si| = g − |√|, we

put
√

’s in dimensions in
⋃r

i=0 Si of A and put ×’s in dimensions in
⋃5

i=r+1 Si of
A, and we are done. To obey the alignment constraints, other data arrays will
inherit the

√
’s and ×’s information.

Otherwise, if
∑r

i=0 |Si| > g − |√|, we put
√

’s in dimensions in
⋃r−1

i=0 Si of A
and put ×’s in dimensions in

⋃5
i=r+1 Si of A. Note that the corresponding |Sr |

dimensions in Sr have been marked with cr ’s. It remains to decide which g−|√|
dimensions of A, from those in Sr , should be selected.

We select them so as to heuristically minimize their interference with tem-
poral dependence vectors and temporal use vectors. Before that, we find all
temporal dependence vectors and temporal use vectors for all data arrays gen-
erated or used in this Do-loop. For each dimension in Sr , there is a correspond-
ing elementary vector ei such that a specific occurrence of A, where the owner
computes rule or the owner stores rule is based in the Do-loop, refers to the
level-i loop control index variable in that dimension. For each such elementary
vector ei, we define a rank of length three. The first component is related to the
optimal choice of a tile size—which will be explained later (in Inequality (7) in
Section 6). At this point, we need to know that it is better to have the flexibility
to choose arbitrary tile sizes. As will be described later, if Inequality (7) is not
satisfied, tile sizes are restricted if the vector ei is chosen as an iteration space
mapping vector. Therefore, the first component of the rank is 0 if ei satisfies
Inequality (7); otherwise, it is 1. If the first component of the rank is 1, it is
better not to select ei as an iteration space mapping vector, or defer this selec-
tion as late as possible. The first component of the rank will be used for such
“deferral.”

The second component is the number of temporal dependence vectors to
which it is not orthogonal; the third component is the number of temporal use
vectors to which it is not orthogonal. We order the ranks (of the vectors) in an
increasing lexicographical order and for convenience, number them 1, 2, 3, . . . .
We group the vectors into sets based on equality of ranks, say T1, T2, T3, . . . .
Thus, a vector is in Ti if and only if its rank is i. Let |Ti| be the cardinality
of Ti. Choosing g − |√| vectors from Ti for i ≥ 1 is similar to that of choos-
ing dimensions from

⋃5
i=0 Si described in above. We put

√
’s in dimensions of

A corresponding to the chosen g − |√| vectors and put ×’s in dimensions of A
corresponding to other vectors, and we are done.

However, it is still possible that
⋃r ′−1

i=1 |Ti| < g − |√| < ⋃r ′
i=1 |Ti| for some

r ′. If data array variables of A are generated or used in other nested Do-loops
that have not yet been considered, we repeat Step 1. Otherwise, if there are
additional generated-and-used data arrays, whose data distributions have not
yet been completely determined, then we pick a highest ranked generated-
and-used data array that we did not consider before and for which its data
distribution has not been completely determined, and we repeat Step 1 with the
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selected data array playing the role of A. If there are still remaining dimensions
whose distributions need to be determined, we arbitrarily put

√
’s in the g−|√|

dimensions and put ×’s in the remaining dimensions, and we are done.

Explanation: There are correspondences between iteration space mapping
vectors and distributed dimensions of the dominant data array in each nested
Do-loop. In order to comply with spatial relations, data dimensions having small
penalties should be distributed first. In order to comply with temporal depen-
dence relations, iteration space mapping vectors should be in the null space of
the space generated by temporal dependence vectors. Since temporal depen-
dence vectors force the execution in sequence, and temporal use vectors may be
removed by replicating the corresponding read-only data, it follows that tem-
poral dependence vectors are “more important” than temporal use vectors.

Substep 3. /∗ Block sizes of data distributions are determined. ∗/

Based on the now determined data distribution of A and on the alignment
relations, data distribution of some of the other data arrays is determined.
For those dimensions i that are marked with “

√
”, we have to determine block

sizes for the corresponding cyclic(dbi) distributions. Block sizes are chosen so
that: (1) stride alignment constraints are satisfied, (2) the computational load
among the PEs is balanced, and (3) communication is minimized. Currently,
stride alignment constraints can be satisfied, but we still depend on table-look-
up heuristics to select suitable block sizes that account properly for both load
balancing and communication overhead as will be explained in the next para-
graph. Although for a specific class of problem, block sizes can be determined
based on finding the optimal tile sizes as described in Section 6.3, finding opti-
mal block sizes for general cases is still an open issue.

Explanation: Block sizes have to satisfy stride alignment constraints, other-
wise, irregular communication is required. For example, if A(l1 + is1) is “axis”
aligned with C(l2 + is2), A is distributed by cyclic(b1), C is distributed by
cyclic(b2), and b1/s1 = b2/s2; then their stride alignments are matched and
there exist closed forms to represent communication sets. For details of gener-
ating communication sets, interested readers can refer to Lee and Chen [1997].
Next, if the iteration space is not rectangular, in order to maintain load balance,
small block sizes are preferred. For example, if the iteration space is a pyramid
(such as the iteration space of an LU decomposition) or a triangle (such as the
iteration space of a triangular linear system), then a cyclic(b) distribution is
preferred, where b is a small positive integer. However, if the iteration space
is rectangular, in order to decrease communication cost due to the fetching of
data from neighboring PEs, large block sizes are preferred. In general, block
sizes should be a compromise for improving load balance and decreasing com-
munication cost for the complete program fragment, for which a static data
distribution scheme is adopted.

In the following, we present four examples. In the first three examples, the
target machine is a linear processor array, and therefore g = 1. For the fourth
example, both a 1D linear processor array and a 2D processor grid are used,
and therefore g = 1 and g = 2, respectively.
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Fig. 8. (a) A matrix multiplication algorithm, (b) the corresponding component affinity graph.

Example when g < |c0|: Consider the matrix multiplication algorithm as
specified in Figure 8(a). The corresponding component affinity graph and tem-
poral vectors are shown in Figure 8(b). After applying the component alignment
algorithm to the component affinity graph, we obtain a partition of nodes: C1,
A1, and B1 are in one group; C2, A2, and B2 are in the other group. Array C is
the only generated-and-used data array and has no spatial vector. Thus, both
dimensions of C are marked by c0’s as C(c0, c0) and g = 1 < |c0| = 2. The
subscripts of the first dimension of C only involve the innermost loop control
index variable i, therefore, e3 is a candidate for the iteration space mapping
vector. The subscripts of the second dimension of C only involve the level-2
loop control index variable j , therefore, e2 is another candidate. Because
rank(e2) = rank(e3) = (0, 0, 1), T1 = {e1, e2} and g = 1 < |T1| = 2. We have
to sacrifice one candidate. The final iteration space mapping vector is arbitrar-
ily chosen as e2 for fixing array B in local memory, thus, the iteration space is
decomposed along its middle Do- j loop. Because the iteration space is rectan-
gular, block distribution is used. Since e2 corresponds to the second dimension
of C, according to the alignment relations, we have the following data distribu-
tions: C(×, block), A(×, block), and B(×, block).

Note that, in Figure 8(b), since the dashed partition line goes across an edge
(connecting B1 and A2), communication overhead cannot be avoided if we can
only store one copy of data array A in the PE array. But since array A is read-
only, appropriately storing multiple copies of A can be used to avoid the need
for communication [Lee 1995a]. This discussion of when it is worthwhile to
replicate read-only data to reduce the communication cost is beyond the scope
of this article.

Example when g = |c0|: Consider the program fragment of the column sweep
of the 2D heat equation in Figure 5(a) again. p and q are privatization arrays;
u is a read-only array; thus, only v is a generated-and-used array. Array v has
a spatial dependence vector sv = (c2, 0). Therefore, we mark v to be v(c2, c0),
and g = |c0| = 1. The final data distribution scheme is determined as shown
in Eq. (4). Since the subscripts of the second dimension of v only involve the
outermost loop control index variable i, based on the owner computes rule, the
iteration space is decomposed along its outermost Do-i loop.

Example when |c0|+|c1| < g < |c0|+|c1|+|c2|: Consider the depth-two nested
Do-loop in Figure 9(a). Suppose that data distribution for array C has not been
determined, and we proceed to do it now. Array C has two spatial dependence
vectors (0, c2) and (c2, 0), therefore, we put two c2’s in both dimensions of C, thus,
C(c2, c2). We have, |c0| + |c1| = 0 < g = 1 < |c0| + |c1| + |c2| = 2. The subscripts
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Fig. 9. (a) A Do-loop has three temporal dependence vectors: (0, 1), (1, 0), and (1,−1), (b) array C is
distributed as C(×, block), (c) two tiling vectors are (1, 0) and (1, 1), (d) an iteration space mapping
vector is (0, 1) and a tiling vector is (1, 0).

of the first dimension of C only involve the outermost loop control index vari-
able i, therefore, e1 is a candidate for the iteration space mapping vector. The
subscripts of the second dimension of C only involve the innermost loop control
index variable j , therefore, e2 is another candidate. Since C has three temporal
dependence vectors: (1, 0), (0, 1), and (1,−1); e1 satisfies the Inequality (7) in
Section 6 and e2 does not. rank(e1) = (0, 2, 0) and rank(e2) = (1, 2, 0). The rank
of e1 is lexicographically smaller than the rank of e2. Therefore, e1 is chosen
as the iteration space mapping vector, and the iteration space is decomposed
along its outermost Do-i loop. Because the iteration space is rectangular, block
distribution is used. Since subscripts of the first dimension of C only involve
the outermost loop control index variable i, array C is distributed along its first
dimension, say C(block,×).

Example when |c0| + |c1| + |c2| < g < |c0| + |c1| + |c2| + |c3|: Figure 10 shows
the Dgefa program in Linpack for computing Gaussian elimination with partial
pivoting. Because there are true backward dependences from line 28 to lines 6,
8, 17, and 18, the outermost Do-k loop has to be executed sequentially. Within
each outermost iteration, there is no temporal dependence relation for array
A; however, there are several spatial use vectors. The pair 〈A(i, k), A(k, k)〉 for
i > k, due to lines 6, 8, and 9 induces one spatial use vector, sr

A(1) = (c3, 0);
the pair 〈A(ip, j ), A(k, j )〉 for ip > k, due to lines 17, 18, and 19 induces the
same spatial use vectors; the pair 〈A(i, k), A(k, k)〉 for i > k, due to lines 22
and 24 induces another same spatial use vector; and two pairs 〈A(i, j ), A(k, j )〉
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Fig. 10. A program computes Gaussian elimination with partial pivoting.

for i > k and 〈A(i, j ), A(i, k)〉 for j > k, due to line 28 induce two spatial
use vectors sr

A(1) = (c3, 0) and sr
A(2) = (0, c3), respectively. Because the most

computationally intensive Do-loop includes lines from 26 to 29, we put c3’s in
both dimensions of A, thus, A(c3, c3). We have |c0| + |c1| + |c2| = 0 < g ≤ |c0| +
|c1| + |c2| + |c3| = 2.

If the target machine is a two-dimensional grid, thus g = 2, then both
dimensions are distributed. Because the iteration space is a pyramid, in or-
der to satisfy a load balance constraint, both dimension are distributed as a
cyclic(b) distribution as A(cyclic(b), cyclic(b)), where b is a small positive
integer. On the other hand, if the target machine is a one-dimensional linear
processor array, thus g = 1, we have to give up one degree of parallelism. How-
ever, computation decomposition cannot be determined based on the nonexis-
tent temporal dependence relation; it also cannot be determined based on two
spatial use vectors induced from the most computationally intensive Do-loop of
lines from 26 to 29, as these two spatial vectors have the same weight. However,
based on the spatial use vector, sr

A(1) = (c3, 0), induced from three other less
computationally intensive Do-loops, we can decide to distribute array A(i, j )
along its second dimension among PEs as A(×, cyclic(b)). Then, based on the
owner computes rule, the iteration space for the most computationally-intensive
Do-loop of lines from 26 to 29 is decomposed along its first dimension of Do- j
loop, as subscripts appear in the second dimension of A only involve loop control
index variable j .

6. TILING THE ITERATION SPACE ON DISTRIBUTED MEMORY MACHINES

This section discusses Step 4 of the proposed method in Section 3. On uniproces-
sor systems, tiling (or strip-mining) is used to improve data locality to optimize
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cache coherence or data reuse within the memory hierarchy [McKinley et al.
1996; Wolfe 1996]. On multiprocessor systems, tiling, in addition, is used to
support coarse-grain pipelining so that data generated in one tile and used in
neighboring tiles can be moved as a group, reducing communication overhead.

Returning to our setting, we concentrate on one of the nested Do-loops (recall
Figure 5(d)). We decide on data distribution first, and, on that basis, on compu-
tation decomposition among PEs. We can then partition the iterations assigned
to each PE into sets, called tiles. Then we schedule tiles globally obeying some
constraints. First, a PE is executing iterations assigned to it tile by tile, possibly
waiting between consecutive tiles due to dependence constraints. Second, once
a PE starts executing a tile, it can complete it without waiting for other PEs.
(This is the atomic computation constraint; the dependence relations among
tiles do not induce a cycle.) We want to define tiles in a way that minimizes the
total execution time.

The main difference between previous work dealing with tiling of the iter-
ations on shared memory machines or on those machines used as peripheral
parallel devices, such as systolic arrays, attached to a host computer [Boulet
et al. 1994; Hodzic and Shang 1998; Lee and Kedem 1990b; Xue 1997] and this
article, is the relative emphasis on data distribution vs. computation decompo-
sition, as seen next. The optimizations that can obtained using our approach
cannot be obtained using the previous methods.

6.1 Tiling on Shared Memory Machines

We start by reviewing the well-known tiling approach used for shared memory
machine, where data movement is (relatively) very inexpensive. We also show
by example that its utility is restricted in the context of distributed memory
machines.

A depth-n nested Do-loop can be represented by an iteration space and tem-
poral dependence/use relations among iterations. A tiling hyperplane can be
represented by its normal vector, which we called the corresponding tiling vec-
tor in Figure 6(e) and Figure 6(f). While employing a shared memory machine
model, data distribution is ignored. For data locality reasons, it is better if there
are no constraints on tile size, so that cache coherence or data reuse can be op-
timized. A feasible set of n independent families of parallel equidistant tiling
hyperplanes, which are represented by n tiling vectors, slice the iteration space
into n-D parallelepiped tiles without any tile size constraint, if they satisfy the
following condition [Irigoin and Triolet 1988]. For each tiling vector, say h,

either h · d j ≥ 0 for all temporal dependence vectors d j
or h · d j ≤ 0 for all temporal dependence vectors d j . (7)

Let D be the set of all temporal dependence/use vectors. If rank(D) < n,
there exists communication-free tiling of the iteration space; for example, with
the basis of the null space of D serving as the corresponding tiling vectors.
If rank(D) = n, then the tiling vectors can be found as follows: Consider a
set of n − 1 linearly independent temporal vectors, d ′1, d ′2, . . . , d ′n−1 and let
h = null(d ′1, d ′2, . . . , d ′n−1) (the null space of the space generated by d ′1, d ′2, . . . ,
d ′n−1). If h satisfies the constraint in Inequality (7), then h is a feasible tiling
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vector. By consider all such sets of n−1 linearly independent temporal vectors,
we are guaranteed to find n linear independent tiling vectors (as rank(D) = n).
Furthermore, there are no constraints on tile size [Boulet et al. 1994; Hodzic
and Shang 1998; Xue 1997]. We refer to this method as memory-oblivious tiling
method.

We consider now a one-dimensional distributed memory PE array, the
Do-loop in Figure 9(a), and the data distribution as in Figure 9(b) (data ar-
ray C is distributed along its second dimension, C(×, block)). We attempt to
apply the memory-oblivious tiling method to this example. There are three
temporal dependence vectors: D = {(0, 1), (1, 0), (1,−1)}. The rank of D is 2,
the depth of the nested Do-loop, so we will consider all sets consisting of one
temporal vector. The null space of (0, 1) is (1, 0), the null space of (1, 0) is (0, 1),
and the null space of (1,−1) is (1, 1). (0, 1) is not a feasible tiling vector because
(0, 1) · {(0, 1), (1, 0), (1,−1)} = {1, 0,−1}. (1, 0) and (1, 1) are feasible tiling vec-
tors as depicted in Figure 9(c) because (1, 0) · {(0, 1), (1, 0), (1,−1)} = {0, 1, 1}
and (1, 1) · {(0, 1), (1, 0), (1,−1)} = {1, 1, 0}. However, the resulting computation
decomposition does not match the data distribution, and therefore this tiling is
not permitted. We next show, that feasible tiling exist if we search for it going
beyond memory-oblivious tiling method. An example of such tiling is depicted
in Figure 9(d), with the explanation following.

6.2 Tiling on Distributed Memory Machines

We consider a g -D PE grid and a nested Do-loop of depth n > g , to be executed
on it. We assume that subscripts of one occurrence of the dominant data array
are identical to some loop control index variables (possibly after a preprocessing
step). Assume that data distribution for data arrays in the Do-loop has been
determined. We can obtain g iteration space mapping vectors, which are ele-
mentary vectors. These vectors are naturally also tiling vectors. We only need
to determine the remaining n − g tiling vectors, whose n − g corresponding
tiling hyperplanes will slice the iterations assigned to each PE.

To finish the example of Figure 9, since the data distribution of array C is
C(×, block) and the subscripts of the second dimension of C only involve the
innermost loop control index variable j , the iteration space mapping vector is
e2 = (0, 1), as depicted in Figure 9(d). We can choose e1 = (1, 0) as the sec-
ond tiling vector and the tile size as 1 × block, where the block distribution
is cyclic(block). Note that, we use block to represent both the block distribu-
tion and the block size for convenience. Then, all tiles still satisfy the atomic
computation constraint.

In general, we have one of the two cases:

Case 1. All the g iteration space mapping vectors satisfy Inequality (7). Then,
the remaining n− g tiling vectors, whose corresponding tiling hyperplanes will
slice iterations assigned to each PE, also can be chosen using the memory-
oblivious tiling method. There are no constraints on tile sizes.

Case 2. At least one of the g iteration space mapping vectors does not satisfy
Inequality (7). We refer to such a vector as bad. Let ei be any bad vector. We want
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to choose a feasible tile size so that all tiles can satisfy the atomic computation
constraint. Without loss of generality, the level-i loop control index is increasing.
(If the level-i loop control index is decreasing, we first temporarily reverse the
sign of the ith entry of all the temporal vectors; after finding the tiling vectors,
we reverse the sign of the ith entry of all the tiling vectors.) Thus, the first
nonzero entry of any temporal vector is positive. In addition, i 6= 1, because all
temporal vectors d j are lexicographically positive, and therefore e1 · d j ≥ 0 for
every d j , and Inequality (7) would be satisfied.

Let dk be a temporal vector for which ei · dk < 0. Let λ be the position of the
first nonzero entry of dk , say dk,λ. Then eλ is chosen as a tiling vector and the tile
size along the λth dimension must be at most dk,λ. Examining all such ei ’s and
dk ’s, we get a full set of constraints on the sizes of associated tiles. The remain-
ing tiling vectors can be chosen based on the memory-oblivious tiling method,
with no constraints on the associated tile sizes. The constraints for tile sizes
come from the theoretical results of cycle shrinking [Polychronopoulos 1988],
therefore, all the tiles satisfy the atomic computation constraint. For example,
in a 2D iteration space, if there is only one temporal dependence vector (3,−1),
then iterations within three consecutive rows have no dependence relations.
Therefore, if the tile size along the first dimension is chosen as 3, this will not
induce any dependence cycle among tiles.

6.3 Optimizing Tile Sizes

To minimize total execution time, it may be useful to choose tile sizes which are
smaller than the upper bounds implied by the constraints above. A small tile
corresponds to a fine-grain solution, incurring a large number of small com-
munication messages among PEs. A large tile corresponds to a coarse-grain
solution, incurring a long delay time among PEs due to dependent data. We
provide an analytical method to determine tile shapes and sizes only for a rect-
angular 2D iteration space, which is represented by 1 ≤ i ≤ X and 1 ≤ j ≤ Y .
We assume that the distance between two parallel iteration space mapping hy-
perplanes is b, with b large enough so that dependent data of an iteration is
either in the local memory of a PE or in its neighboring PEs. Our target machine
is a linear processor array with N PEs. Thus, the data distribution function of
the distributed dimension of the corresponding data array is cyclic(bs), where s
is the stride of the affine function in the corresponding subscript. The value of b
can be computed based on a near optimal tile size. Once b has been determined,
then the shape of a tile can be computed.

We have the following four cases.

Case 1. Iteration space mapping vector is (0, 1), the other tiling vector is
(1, 0), and all the entries in each temporal vector are nonnegative as depicted in
Figure 11(a). In this case, tiles are executed column-wise. Let the tile size be
Z = b× a. To avoid idle time, we require (X /a) ≥ N , or a ≤ (X /N ). Then the
total execution time is:

T ≤ (X Y /(Z N )+ N − 1)(Z tf + ts + atc), (8)

where tf is the execution time for performing an iteration, ts is the set-up time for

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 1, January 2002.



40 • P.-Z. Lee and Z. M. Kedem

Fig. 11. Four cases of tiling two-dimensional rectangular iteration space.

sending–receiving a message, and tc is the communication time of transferring
a word. Since, in practice, ts, is much larger than tc, we ignore the term atc in
Eq. (8). We will therefore minimize T ′ = (X Y /(Z N ) + N − 1)(Z tf + ts). Then
the optimal Z is (X Y ts/(N (N −1)tf))1/2. (The function f (x) = (α/x+β)(γ x+ δ)
is minimized when x = ((αδ)/(βγ ))1/2.) As T , in fact, decreases with a, we
prefer for a to be small and for b to be large. If the value of b has not been
determined yet, we set b = Y /N if Z ≥ Y /N , and b = Z otherwise. Then a =
min{Z /b, X /N }.

Case 2. Iteration space mapping vector is (1, 0), the other tiling vector is
(0, 1), and all the entries in each temporal vector are nonnegative, as depicted
in Figure 11(b). The derivation is similar to that of in Case 1. We get Z =
(X Y ts/(N (N − 1)tf))1/2. If the value of b has not been determined yet, we set
b = X /N if Z ≥ X /N , b = Z otherwise. Then a = min{Z /b, Y /N }.

Case 3. Iteration space mapping vector is (0, 1), the other tiling vector is
(1, 0), and there exist temporal vectors in which one entry is positive and the
other is negative, as depicted in Figure 11(c). We assume that the tiles are
scheduled by an optimal data flow method, so that if more than one tile is
available for execution, the lexicographically smaller one is selected. Then, the
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total execution time is:

T ≤ (X Y /(Z N )+ 2(N − 1))(Z tf + ts + atc). (9)

Again we ignore the term atc and obtain a near optimal tile size Z =
(X Y ts/(2N (N − 1)tf))1/2. If the value of b has not been determined yet, then
b = Y /N if Z ≥ Y /N , and b = Z otherwise. Then a = min{Z /b, v}, where v
is the smallest integer from all the positive entries appearing in the temporal
vectors that have both a positive (in the first position) and a negative (in the
second position) entries.

Case 4. Iteration space mapping vector is (1, 0), the other tiling vector is (u, v)
when there exists a temporal vector (kv, −ku), where u and v are relatively prime
positive integers, as depicted in Figure 11(d). In this case, the shape of a tile is
a parallelogram and tiles are executed in a row-wise manner. As usual, let b be
the distance between two parallel iteration space mapping hyperplanes and let
a be the distance between two of the other parallel tiling hyperplanes. Then a
can be calculated by assuming that the line ux + vy = c passes through both
(b, 0) and (0, a). Thus, a = bu/v and the tile size is b2u/v, where we assume
that b is a multiple of v. To avoid idle time, we require (Y /(bu/v)+ u/v) ≥ 2N ,
or b ≤ (Y /((2N − u/v)u/v)). Then, the total execution time is:

T ≤ (X /(bN )(Y /(bu/v)+ u/v)+ (N − 1)u/v)(Z tf + ts + b(u/v)tc)
= (X Y /(Z N )+ (X /(bN )+ N − 1)u/v)(Z tf + ts + b(u/v)tc).

This case is different from the first three cases. Since v ≤ b ≤ m = min{(Y /
((2N − u/v)u/v)), X /N }, we let Tv = (X Y /(Z N ) + (X /(vN ) + N − 1)u/v)
(Z tf + ts + utc), whose optimal tile size Zv = (X Y (ts + utc)/(Ntf (X /
(vN )+ N − 1)u/v))1/2; we let Tm = (X Y /(Z N )+ (X /(mN )+ N − 1)u/v)(Z tf +
ts+m(u/v)tc), whose optimal tile size Zm = (X Y (ts+m(u/v)tc)/(Ntf (X /(mN )+
N − 1)u/v))1/2; and we let a near optimal tile size Z = (Zv + Zm)/2. If
the value of b has not been determined yet, then b=min{(Z v/u)1/2, (Y /((2N −
u/v)u/v)), X /N }.

7. EXPERIMENTAL STUDIES

We validated the usefulness of our method by evaluating several implemen-
tations of three applications: the two-dimensional heat equation, the two-
dimensional Fast Fourier Transform, and the Gaussian elimination with pivot-
ing, all on one-dimensional PE arrays. The actual experiments were conducted
on the two machines that were available to us: a 32-node nCUBE-2 computer
and a cluster of four UltraSPARC-I workstations both located at Academia
Sinica. In the nCUBE-2, each node runs at a modest clock rate of 20 MHz and
has 4 MB of RAM. The four UltraSPARC-I workstations, each with 64 MB of
RAM, run at the clock rate of 166 MHz, are connected by a 100 Mbs Ethernet,
and use SUNOS 5.5.1 with a MPI library (MPICH version 1.0.4 [MPICH 1996]).

7.1 Two-Dimensional Heat Equation

Although optimal data distributions for column sweep and for row sweep are
different, all temporal vectors are regular. Thus, even under a static data
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Fig. 12. Execution time of three algorithms for solving the 2D heat equation on the nCUBE-2. (a)
Data size is 210 × 210 on 32 PEs, 16 PEs, and 8 PEs. Data sizes are 28 × 28, 29 × 29, and 210 × 210

on (b) 8 PEs, (c) 16 PEs, and (d) 32 PEs.

distribution, we can apply our tiling techniques to improve the execution time.
Figure 12 shows the experiments on the nCUBE-2, using three algorithms:
a dynamic data-layout algorithm (Aggregate) whose transpose operations are
based on aggregate operations [Fox et al. 1988], with a transpose operation tak-
ing log N steps for N PEs; a dynamic data-layout algorithm (Ad-hoc) in which
for each transpose operation, each PE sends N − 1 messages to other PEs; and
a tiling algorithm (Tiling). x y Pq means the execution on x PEs with data size
2 y × 2 y , using the Pq algorithm; where Pq stands for one of the following: Ag
(Aggregate), Ad (Ad-hoc), or Ti (Tiling). When the data size is 28 × 28 (28 × 28

and 29 × 29, respectively) on 16 PEs (32 PEs and 32PEs, respectively), the
maximum tile size/block is 16 (8 and 16, respectively). Figure 13 shows the
results on the cluster using “Ad-hoc” and “Tiling.” When the data size is 28×28

(29×29 and 210×210, respectively) on 4 PEs, the maximum tile size/block is
64 (100 and 100, respectively). Both Figure 12 and Figure 13 show scalability
and speedup; the execution time decreases when the number of PEs increases
and the execution time increases when the size of the problem increases.

The pure computation times for these three algorithms are basically the
same. However, their communication times, which depend on the volume of
data transferred, are quite different. Suppose that the data size is Nx × Ny
partitioned among N PEs, with each containing NxNy/N data. For “Aggregate,”
a PE sends 2(log N )NxNy/(2N ) data to other PEs; the factor 2 is due to one
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Fig. 13. Execution time of two algorithms for solving the 2D heat equation on the cluster, where
data sizes are 28 × 28, 29 × 29, and 210 × 210.

transpose for each of u and v, and each transpose operation takes log N steps
on (the hypercube-based) nCUBE-2. For “Ad-hoc,” a PE sends 2(N−1)NxNy/N 2

data to other PEs. For “Tiling,” a PE only sends 3Nx or 3Ny data to other PEs;
where the factor 3 is due to solving three first-order recurrence equations for
each tridiagonal system. It seems that if a good tile size is chosen, “Tiling” is
likely to perform better than the other algorithms.

The experimentally obtained optimal tile sizes Z match well with those de-
rived from the analytical model in Section 6.3. Let block = Nx/N or Ny/N . For
the nCUBE-2, ts = 350 µs, tc = 4.56 µs, tf = 17 µs for executing an iteration
of Loop 2 in Figure 5(d), and tf = 8 µs for executing an iteration of Loop 4 in
Figure 5(d). Then for Loop 2, Z/block = 4 or 5, which matches the experimental
results. The factor Z/block for Loop 4 is 6 or 7. For the cluster, ts = 819 µs,
tc = 0.21 µs, tf = 1.1 µs for executing an iteration of Loop 2, and tf = 0.5 µs for
executing an iteration of Loop 4. Then, for Loop 2, Z/block = 32, which matches
the experimental studies. The factor Z/block for Loop 4 is 46. It becomes clear
now that when ts dominates tf, we have coarse-grained computation; otherwise,
we have a medium- or a fine-grained computation. As the factor ts accounts for
the communication and the factor tf accounts for the speed of CPUs, this is the
expected situation.

7.2 Two-Dimensional Fast Fourier Transform

In this experimental study, we ran a 2D Fast Fourier Transform (FFT) immedi-
ately followed by running an inverse 2D FFT using the row-column method for
the complex matrix (AR, AI), where AR is the real part and AI is the imaginary
part. The program contains four Do-loops: Loop 1 computes a 1D FFT for each
row, Loop 2 computes a 1D FFT for each column, Loop 3 computes an inverse
1D FFT for each column, and Loop 4 computes an inverse 1D FFT for each row.
The size of the data will be denoted by m.

In the row sweep, data in different rows are independent; however, there
is irregular data dependence along the second dimension of AR and AI. Thus,
the spatial dependence vectors of AR and AI are sAR = (0, c4) and sAI = (0, c4),
respectively. By our method, the data distribution functions for AR and AI will be
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Fig. 14. Execution time of three algorithms for solving the 2D FFT on the nCUBE-2.

AR(block,×) and AI(block,×), respectively. In the column sweep, data among
different columns are independent; however, there is irregular data dependence
along the first dimension of AR and AI. Thus, the spatial dependence vectors of
AR and AI are sAR = (c4, 0) and sAI = (c4, 0), respectively. The data distribution
functions for AR and AI will be AR(×, block) and AI(×, block), respectively.

When static data distribution scheme which distributes AR and AI either row
by row or column by column is adopted, communication will be required to ex-
ecute several “bit-reverse shuffle-exchange” and “butterfly-pattern.” As tempo-
ral dependence vectors are irregular, we cannot use tiling. Thus, each PE sends
data of size 4(log N )m2/N to other PEs; the factor 4 is due to the “bit-reverse
shuffle-exchange” and “butterfly-pattern” data communications for both AR and
AI. When a dynamic data distribution scheme for the row sweep and for the col-
umn sweep is adopted, communication will be required to execute four matrix
transposes, with two transposes for both AR and AI. If a transpose is imple-
mented using aggregate operations, each PE sends a total of 4(log N )m2/(2N )
data to other PEs; if a transpose is implemented using an ad hoc method, each
PE sends a total of 4(N − 1)m2/N 2 data to other PEs. Figure 14 shows the
results for the nCUBE-2 for three algorithms: a static data distribution (Static)
and two dynamic data distributions (Aggregate and Ad-hoc). x Dy Pq stands
for using x PEs to run dynamic data-layout algorithm Pq (which is Ag or Ad, as
before); x St stands for the static data-layout. For this problem, dynamic data
distribution is superior to the static one.

7.3 Gaussian Elimination with Pivoting

In this experimental study, the input is a matrix A(i, j ) for 1 ≤ i, j ≤ m; the
output includes an upper triangular matrix A(i, j ) for 1 ≤ i ≤ j ≤ m, a lower
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Table II. Execution Time (Second) for Solving the Gauss Elimination on the Cluster

b 1 2 4 8 16 32 64 128 256
A

1 PE 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
27 × 27 2 PE 0.22 0.21 0.21 0.21 0.21 0.22 0.24

4 PE 0.20 0.22 0.23 0.23 0.23 0.24
1 PE 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20

28 × 28 2 PE 1.22 1.22 1.23 1.23 1.24 1.28 1.36 1.53
4 PE 0.82 0.85 0.87 0.88 0.89 0.90 0.97
1 PE 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

29 × 29 2 PE 9.20 9.15 9.19 9.26 9.32 9.35 9.59 10.27 11.68
4 PE 4.78 4.98 5.06 5.12 5.15 5.26 5.66 6.40
1 PE 145.4 145.4 145.4 145.4 145.4 145.4 145.4 145.4 145.4

210 × 210 2 PE 71.0 71.0 72.0 72.7 73.1 73.3 74.2 76.6 83.8
4 PE 35.1 36.2 36.8 37.2 37.8 37.9 39.5 43.1 49.6

Note: Matrix A is distributed along the second dimension by a cyclic(b) distribution, data sizes are 27 × 27,
28 × 28, 29 × 29, and 210 × 210, respectively.

triangular matrix for multipliers A(i, j ) for 1 ≤ j < i ≤ m, and a permutation
array ipvt(i) for 1 ≤ i ≤ m, as shown in Figure 10. Applying our algorithm,
matrix A is distributed along the second dimension by a cyclic(b) distribution,
say A(×, cyclic(b)). Table II lists the results on the cluster when data sizes
are 27 × 27, 28 × 28, 29 × 29, and 210 × 210, respectively. It shows scalability
and speedup; the execution time decreases when the number of PEs increases,
and the execution time increases when the size of the problem increases. It is
instructive to mention that because the set-up time ts of a message is much
larger than the execution time t f for performing an iteration, when data size is
small, this is a communication-bound problem. Therefore, load balancing is not
a sensitive factor. However, when data size is large, this becomes a computation-
bound problem, and therefore load balancing is a crucial factor for gaining
performance. Because the iteration space is a pyramid, when block sizes are
b = 1 or b = 2, the execution time is minimized, as expected.

8. CONCLUSIONS

Experienced programmers write scientific application programs following a
good programming style. For example, while writing a program for the 2D heat
equation, they write a column sweep then followed by a row sweep. Therefore,
data references exhibit localities and fixed patterns. Since optimizing data dis-
tribution and maintaining locality are crucial for performance on DMPCs, we
introduced the concept of the dominant array to account for this. A dominant
array was one whose migration would be very expensive and therefore mini-
mized by appropriate data distribution, with other data arrays aligned with it
as appropriate and feasible. As in different program fragments optimal data
alignments may be different, we proposed an algorithm to decide whether con-
secutive program fragments should share the same data alignment.

While determining a static data distribution scheme within one program
fragment, which may include several Do-loops, we proposed to use spatial
dependence/use vectors—another concept we introduced—to help determine
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which dimensions of the dominant data array is better not to distribute. Spatial
dependence/use vectors independently represent a superset of irregular tempo-
ral dependence/use relations, and thus they implicitly help determine mapping
of data with irregular data dependence relations into a fixed PE. We then used
regular temporal dependence/use vectors to determine whether the remaining
dimensions of the dominant data array should be distributed or not. For this, we
examined one by one the Do-loops that involve the dominant data array, starting
from the most computationally intensive Do-loop. We found correspondences be-
tween iteration space mapping vectors and distributed dimensions of the dom-
inant data array in each nested Do-loop, which allowed us to design algorithms
for determining data and computation decompositions at the same time.

After data distributions are determined, computation decomposition for each
nested Do-loop is determined based on either the owner computes rule or the
owner stores rule with respect to the dominant data array. If all temporal
dependence relations across iteration partitions are regular, tiling techniques
are used to allow pipelining and overlapping of the computation and the commu-
nication. However, tiling the iteration space must account for data distributions,
as otherwise communication costs will be incurred due to data redistribution.
We have proposed algorithms to determine tiling vectors and constraints of tile
sizes for arbitrary nested Do-loops and to determine optimal tile sizes for the
depth-two nested Do-loops.

APPENDIX

A. DETERMINING AXIS ALIGNMENT

For completeness, in the following, we describe how to construct component
affinity graphs and how to determine axis alignment based on the component
alignment algorithm, as presented in Lee [1997]. As is shown in Step 1 of the
proposed method in Section 3, we apply the loop fission technique so that the
original program is more suitable for parallel execution and we can execute
nested Do-loops in sequence.

For each nested Do-loop, we construct a component affinity graph. The com-
posite component affinity graph for a sequence of consecutive nested Do-loops
is the union of the graphs for individual nested Do-loops. If an iterative
Do-loop contains j nested Do-loops, the component affinity graph for this iter-
ative Do-loop is identical to the composite graph of the j inner nested Do-loops,
except that the weight of each edge becomes m times of the original one, where
m is the problem size of the iterative Do-loop.

We now describe how given a nested Do-loop, we construct a component
affinity graph for it. The graph is undirected and weighted. Its nodes repre-
sent dimensions (components) of arrays and its edges specify affinity relations
between nodes. Edges are defined in two ways. First, if the subscripts of the
dimensions of the dominant data array in that nested Do-loop have affinity
relations with the subscripts of the dimensions of other arrays generated or
used in that nested Do-loop, then there are edges between corresponding pairs
of dimensions. We need these edges, because later iteration partitioning due to
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A heuristic component alignment algorithm:
Step 1: construct a component affinity graph from the source program;
Step 2: choose a (high-dimensional) array with a highest dimensionality;

thus, this array has the maximum number of nodes in the graph, and let
its corresponding nodes in the graph become the initial basic set;

Step 3: while the remaining graph is not empty, do
Step 3.1: choose an array with highest dimensionality from the remaining

graph;
Step 3.2: apply the optimal matching procedure to a bipartite graph

constructed from the basic set and the nodes corresponding to
dimensions of the newly selected array;
/* All disjointed subsets of matched nodes represent a partition. */

Step 3.3: combine the matched nodes with the basic set as a new basic set.

Fig. 15. Heuristic component alignment algorithm.

computation decomposition is based on the data distribution of the dominant
data array. It is advantageous, to align other data arrays with this dominant
data array. Second, if two right-hand-side arrays correspond to the two operands
of a binary operator, and if some pairs of subscripts of dimensions of these two
arrays have affinity relations, then there are edges between corresponding pairs
of dimensions of these two arrays. It is advantageous for these two operands to
be aligned. We use the higher ranked data array to represent an intermediate
result of the operation for considering alignments with the operands of other
binary operations.

The weight of an edge is an estimate of the communication that is required
if dimensions of two arrays are distributed along different dimensions of P .
The component alignment problem is defined as an optimal partitioning of
the node set of the component affinity graph into k disjointed subsets, where
k is the dimension of the highest dimensional data array. The objective is to
minimize the total weight of the edges across nodes in different subsets, under
the constraint that no two nodes corresponding to the same array are in the
same subset.

Although the component alignment problem is NP-hard, Li and Chen have
proposed an efficient heuristic algorithm [Li and Chen 1991b], which we adopt.
For completeness, in Figure 15, we present a very brief version of the compo-
nent alignment algorithm; for fuller details, see Li and Chen [1991b]. Array
dimensions within each of the above mentioned k disjointed subsets are then
aligned together. Data distributions of these array dimensions will share the
same pattern, as discussed in Section 5.
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