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Abstract

In the research described here we examine the emergence
of signaling from non-communicative origins, using the Sir
Philip Sidney Game as a framework for our analysis. This
game is known to exhibit a number of interesting dynamics.
In our study, we quantify the difficulty of reaching multiple
types of equilibria from initially non-communicative popula-
tions with an infinite population model. We then compare the
ability of finite populations with typical tournament selection
to approximate the behaviors observed in infinite populations.
Our findings suggest that honest signaling equilibria are diffi-
cult to reach from non-communicative origins. In the second
part of the paper, we show that the finite model fails to model
dynamics that permit deceptive signaling under typical evolu-
tionary conditions, where infinite populations exhibit spiral-
ing behavior between honest and deceptive signaling.

Introduction
Communication and expression in man and animals has
allowed for the formation of complex social organiza-
tions. Although sophisticated forms of communication have
emerged, such as human language, the origin of animal
communication is rooted in the exchange of simple signals.
These signals have coevolved between senders and reciev-
ers for the communication of attributes such as need, status,
and intention. We study a simple signaling game that allows
us to address some shortcomings of previous studies on the
emergence of signaling. We quantify the difficulty of evolv-
ing honest signaling systems, and the failure of some finite
models to permit deceptive dynamics. These observations
are a step towards understanding how a rational agent could
respond to a signal with Sir Philip Sidney’s immortal words:
“thy neccessity is yet greater than mine.”

The coevolution of signaling has attracted attention since
the inception of the field of artificial life and even earlier in
studies of animal behavior and ethology. Evolutionary com-
putation researchers studying the origins of signaling gen-
erally employ evolutionary algorithms (EA) in their mod-
els, while game theorists employ population dynamics mod-
els and analytical tools. Some EA work has used game-
theoretic analysis to constrain parameters (Bullock, 1997);

however, we are not aware of any studies of coevolved sig-
nals that relate continuous population dynamics to EA dy-
namics for signaling games. We investigate this relationship
and focus on similar EA configurations to those used in pre-
vious studies of the emergence of signaling. In particular,
we consider the discrepancy between the dynamics of finite
population EA’s and continuous population dynamics.

The relationship between continuous and finite population
evolutionary dynamics has been a contentious topic (Fogel
and Fogel, 1995; Ficici et al., 2005; Ficici, 2006; Ficici and
Pollack, 2007; Nowak et al., 2004). An evolutionarily sta-
ble strategy (ESS) is defined for continuous population dy-
namics as a strategy that cannot be invaded by a rare mutant
(Maynard Smith and Price, 1973; Maynard Smith, 1982).
A common question in the study of evolutionary dynamics
is when finite populations can achieve an ESS. In particular,
the two discoveries that inspire this study are: Best-of-group
tournament selection cannot converge to polymorphic Nash
equilibria (Ficici et al., 2005), and even with a good selec-
tion method, a finite population may be too small to main-
tain an ESS (Ficici and Pollack, 2007). In a simple signal-
ing game we investigate both the reachability of interesting
equilibria from non-communicative origins, and compare
the coevolution of continuous population dynamics to finite
populations under tournament selection (the most common
selection method used in previous work). We find that mul-
tiple dynamics involving signaling behavior are more easily
reached than the traditional signaling ESS, and one of these
dynamics is poorly represented by a finite population.

Background
Zahavi introduced the idea of costly signals as handicaps
which lead to reliable signals (Zahavi, 1975). This handicap
principle has been used to explain how signaling attributes
which would seem to be energetically expensive or super-
fluous for survival can be selected for, especially in sexual
selection. For example, plumage like the peacock’s tail sig-
nal virility and strength to a peahen because the male has
honestly demonstrated that it can carry the unneeded weight
of the brilliant tail. For a good web exposition on honest



Table 1: The Sir Philip Sidney game.
(a) Payoff matrix.

Donate Keep
Potential donor 1− d 1
Signaler
Thirsty 1 1− a
Healthy 1 1− b
m = p(thirsty) = 0.5 Signal cost= c

(b) Sender strategies.

ID Signaler strategies
SH signal only if healthy
ST signal only if thirsty
SN never signal
SA always signal

(c) Donor strategies.

ID Donor strategies
DQ donate only if no signal
DS donate only if signal
DN never donate
DA always donate

signaling, see (Bergstrom, 2012). This work was later given
a rigorous mathematical treatment in (Grafen, 1990) for sig-
nals of a continuous range of quality. Later, two simple dis-
crete signaling games were developed: the Sir Philip Sid-
ney game (Maynard Smith, 1991) and the discrete action-
response game (Hurd, 1995). The former can be seen as a
generalization of the latter, which is a deliberately minimal
signaling game. The discrete action-response game is based
upon the handicap principle, thus models costly signaling.
As the Sir Philip Sidney game is the subject of our study, we
will introduce it in greater detail later.

Bullock analytically evaluated the discrete action-
response game for parameters that should lead to the emer-
gence of signaling, then used an EA to evolve a finite popu-
lation (Bullock, 1997). Agents take turns playing an iterated
signaling game, and are selected for reproduction using spa-
tial tournaments. The results demonstrate a number of dy-
namics ranging from evolutionarily stable strategies (ESS)
to cycles. It is found that the emergence of honest signaling
from a non-communicative state only occurs from a subset
of the analytically determined cooperative parameters.

Noble studied a version of the discrete action-response
game where only one of the signaler states results in posi-
tive payoff for the sender and receiver (Noble, 1999). The
criteria for the honest signaling ESS was shown to be when
the payoff for signaling is greater than the cost of signal-
ing, and the payoff of responding is greater than the cost
of responding. Noble suggested that a signaling game must
permit imperfect information, deception, and manipulation
to allow for information transmission. While all of these
points are present in the described game, we note that the
ambivilence of signalers to transmit a signal in one of the
two possible states means there is no incentive for decep-
tion. We demonstrate situations where an incentive to signal
from both signaler states has significant implications on the
coevolutionary dynamics of signaling.

We have previously worked on evolution of communica-
tion in a group foraging task, although without referencing
the signaling literature (Saunders and Pollack, 1996). Sim-
ilarly, Reggia et al. investigate conditions that enable the
emergence of signaling (Reggia et al., 2001). In this work
the authors use a 2D simulated world where agent behavior
is governed by a finite-state machine, and signaling ability is

encoded in the genome. Agents have an energetic cost of liv-
ing, and independent experiments are performed for preda-
tor signaling, food signaling, and environments where both
types of signaling are possible. Their EA operates on a pop-
ulation of size 200 and multiple forms of tournament selec-
tion are compared. It is particularly interesting that smaller
tournament sizes and spatially-constrained tournaments lead
to more signaling. While the authors describe a set of condi-
tions that enable signaling for their world/agent architecture,
in this study we will investigate conditions that enable sig-
naling in a simplified environment.

A review of the evolution of signaling systems is beyond
the scope of this paper. For an extensive review of studies
on simulating the emergence of communication, including
signaling, see (Wagner et al., 2003).

Sir Philip Sidney Game
The Sir Philip Sidney (SPS) game was developed by John
Maynard Smith as a model of costly signals (Maynard
Smith, 1991). It is an extensive form game between two
players. The importance of costly signals is based upon Za-
havi’s handicap principle (Zahavi, 1975) which states that
reliable signals are costly with respect to the signaler’s eco-
logical context. This cost is explictly introduced as a fitness
penalty in the SPS game.

The SPS game is played for a single round between two
players: a signaler and a donor. The signaler may be in one
of two states: thirsty or healthy. The probability of the sig-
naler being thirsty is m. A thirsty signaler has a fitness of
(1− a), and a healthy signaler has a fitness of (1− b). In all
cases a > b. The strategy of the signaler specifies whether
it signals in either, both, or neither states. It costs the sig-
naler c to transmit a signal. In response to receiving a signal
the donor decides whether or not to donate to the signaler.
Donation comes at a cost, d, to the donor, but heals the sig-
naler to a fitness of 1. Furthermore, a globally-fixed related-
ness term, r, is introduced which accounts for the opponent
in the inclusive fitness of each player. Labels for signaler
and donor strategies are listed in Tables 1(b) and 1(c), re-
spectively. For example, in a game between ST and DS, if
thirsty the signaler will transmit a signal and in response the
donor donates. The signaler’s fitness is (1 − c + r(1 − d))
and the donor’s fitness is (1 − d + r(1 − c)). If the game
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(a) Infinite population.
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(b) Finite population.

Figure 1: Example of an honest signaling equilibrium. The graphs on the right hand side are zoomed in versions of those on
the left. In 1(b) the “always donate” strategy briefly invades the donor population. This is a possibility in the finite model if the
SPS parameters are within a range where non-optimal strategies can be mistook for sampling noise.

was played between ST and DQ, then if thirsty the signaler
transmits a signal and the donor does not donate. The sig-
naler’s fitness is (1 − a − c + r) and the donor’s fitness is
(1 + r(1 − a − c)). The payoff matrix is shown in Table 1.
Unless otherwise specified we set m = 0.5.

The SPS game has been the subject of a number of game
theoretic studies, for both the discrete signaling game we
study here, and the continuous-version of the SPS game
(Johnstone and Grafen, 1992). The interest in this game
arises from its facilities for modeling both costly signaling
and signaling amongst relatives, where the latter property
permits cost-free signaling in a number of conditions.

The key distinction between the discrete action-response
(Hurd, 1995) and SPS games is the use of inclusive fitness
(Hamilton, 1964), adding the opponent’s score weighted by
a “relatedness” term, r. Relatedness accounts for the fact
that if a player’s opponent is related to the player, then ben-
efits to the opponent also benefit the player. Inclusive fitness
is only utilized when computing the score for a donor and
signaler playing a game, as opposed to fitness sharing from
genetic algorithms where related individuals in the same
population share the fitness of a given niche. In (Ozisik and
Harrington, 2012) it was shown that relatedness based upon

tags, unique phenotypic identifiers, destabilizes honest sig-
naling equilibria in finite models.

Non-communicative Equilibria
In this study we are interested in the emergence of signaling
from non-communicative initial conditions. While there are
multiple combinations of signaler and donor strategies that
do not transfer information, we will be particularly inter-
ested in the SN and DN combination of strategies, because
the two populations will be initially composed of predomi-
nately SN and DN individuals. Bergstrom and Lachmann
(Bergstrom and Lachmann, 1997) have shown the SN and
DN pair to be a Nash equilibrium if

d > r(ma+ (1−m)b)

Huttegger and Zollman (Huttegger and Zollman, 2010) note
that reversing the inequality leads to the SN andDA pair of
strategies being a Nash equilibrium. They refer to these as
“pooling equilibria.”

Signaling Equilibria
One of most commonly studied type of equilibria in signal-
ing games with handicap signals is the signaling ESS, some-
times referred to as separating equilibria. In these equilib-



ria the ST and DS strategies are dominant. Bergstrom and
Lachmann (Bergstrom and Lachmann, 1997) show this is a
Nash equilibrium when

a ≥ c+ rd ≥ b and a ≥ d/k ≥ b.

An example of this type of signaling equilibrium is shown in
Figure 1. We will refer to this type of signaling equilibrium
as the honest signaling equilibrium.

Another type of signaling equilibrium is possible where
the SH and DQ strategies are dominant. Huttegger and
Zollman (Huttegger and Zollman, 2010) show this is a Nash
equilibrium when

a ≥ rd− c ≥ b and a ≥ d/k ≥ b.

In previous work on evolving communicative agents we
have seen this type of strategy pattern emerge (Saunders and
Pollack, 1996). We will refer to this type of signaling equi-
librium as the inverse honest signaling equilibrium.

Hybrid Equilibria
A dynamic of particular interest in the SPS game is that
of hybrid equilibria, whose name is taken from the eco-
nomics literature. First formally presented for the SPS game
in (Huttegger and Zollman, 2010), hybrid equilibria are ac-
tually a family of polymorphic mixed Nash equilibria. In
practice these hybrid equilibria can be observed in the SPS
game as a spiraling phenomenon (Figure 2). The system
first approaches a signaling equilibrium, such as ST and
DS, and upon reaching a certain fraction of signalers and
responsive donors SA signalers begin to take advantage of
the donors. The introduction of these deceptive signalers
into the population causes theDN strategy to increase in the
donor population. As the DN strategy increases it becomes
less favorable to signal. The SA strategy signals both when
thirsty and healthy, as opposed to the ST strategy which
only signals when thirsty, which means that the SA strat-
egy has a lower fitness than ST when playing against the
DN strategy, thus the SA strategy will be more strongly
selected against. As ST begins to take over the signaler
population the DS strategy also increases. Huttegger and
Zollman (Huttegger and Zollman, 2010) show that the poly-
morphisms of the hybrid equilibria are mixed Nash equilib-
ria given by λST + (1 − λ)SA and µDS + (1 − µ)DN ,
where

λ = r(ma+(1−m)b)−d
(1−m)(rb−d) and µ = c

b−kd

both of which must be well-defined, and thus

a > d/k > b and b− kd > c.

must also be true. Furthermore, the condition

d > r(ma+ (1−m)b)
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Figure 2: Example of a phase plot of strategies involved in
hybrid equilibria. The evolutionary trajectory begins at the
center of the spiral and moves outwards over time. X- and
Y-coordinates denote the difference between the log10 of the
population fraction for the respective strategies.

is also required. An example of a hybrid equilibrium is
shown in Figure 3. This evolutionary dynamic is reminis-
cent of the complex evolutionary dynamics which have been
observed in continuous populations of Prisoner’s Dilemma
strategies (Lindgren, 1991). However, Lindgren’s system
eventually leads to an ESS, while hybrid equilibria spiral ad
infinitum (Huttegger and Zollman, 2010).

Note that in the case of hybrid equilibria b > 0. This
serves as an incentive for deceptive signaling, which is not a
possibility in the case of Noble’s game (Noble, 1999).

Population Dynamics
We evolve infinite populations with a two-population ver-
sion of the discrete-time replicator equation (Sigmund and
Hofbauer, 1998)

xi(t+ 1) =
π(Z(t), xi))xi(t)∑
j

π(Z(t), xj)xj(t)

zi(t+ 1) =
π(X(t), zi)zi(t)∑

j

π(X(t), zj)zj(t)

where xi(t) is the fraction of strategy i in the first population
X at time t, π(P, s) is the payoff of strategy s against popu-
lation P , and zi(t) is the fraction of strategy i in the second
population Z at time t. The fitness of a particular strategy is
dependent upon the strategy distribution of the other popu-
lation. This assumes complete mixing and that each strategy
plays each other strategy.
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(a) Infinite population.
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(b) Finite population.

Figure 3: Example of a hybrid equilibrium. The graphs on the right hand side are zoomed in versions of those on the left. Note
that the “signal if healthy” strategy invades the signaler population in the finite model. This strategy is essentially non-existent
in the continuous model.

Evolutionary Algorithms

When evaluating finite populations we employ a simple ge-
netic algorithm (Mitchell, 1996). In both populations indi-
viduals are represented as integers between 1 and 4 repre-
senting the strategies listed in Tables 1(c) and 1(b). Strate-
gies are mutated with a probability of 0.01, and no crossover
is used. Mutation is perfomed by replacing an individual
with a randomly generated strategy. Each individual plays
50 games against randomly selected individuals from the op-
posing population, and the average payoff of these games is
treated as the individual’s fitness.

A number of selection methods have been employed in
evolutionary algorithms. In this study we focus on tour-
nament selection due to its prevalence in the study of the
emergence of signaling. In tournament selection, individu-
als are selected for reproduction by repeatedly choosing the
best individuals from small randomly picked subsets. It has
been shown that this “best-of-group” version of tournament
selection has pathological behavior in terms of maintaining
an ESS (Ficici, 2006). This finding helps motivate our hy-
pothesis that this pathology might be present in studies of
the emergence of signaling. (Nowak et al., 2004) extends
the idea of ESS to finite populations as ESSN where N is

the population size. We ensure that all individuals have an
equal opportunity to compete by constructing tournaments
with random permutations of the population.

Results
The results are presented in two sections. We first inves-
tigate the difficulty of reaching particular types of equilib-
ria from non-communicative initial population distributions.
We then use the parameters from the first investigation in a
comparison of infinite and finite population sizes, the latter
are investigated with multiple tournament sizes.

Emergence of Signaling

Game theoretic studies of the SPS game generally lead to
statements about the existence of particular types of equi-
libria if certain conditions hold true for a given set of pa-
rameters. However, the existence of an equilibrium does not
imply that the equilibrium is reachable from arbitrary pop-
ulation distributions. This has significant implications for
the emergence of signaling. Under what conditions can an
equilibrium be reached from a non-communicative origin?

We approach this question empirically. For each type of
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Figure 5: Results for inverse honest signaling equilibria.

equilibria we generate 1,000,000 random parameters1 that
satisfy the conditions presented in the sections describing
equilibria, and test to see whether a continuous model initial-
ized with non-communicative population distributions actu-
ally reaches the target equilibrium. The success rate for a
given equilibria type quantifies the size of the basin of at-
traction in parameter space.

Populations are initialized with primarily non-signalers
and non-donors (97% of the population) and small fractions
of the remaining strategies (1%). We evolve the popula-
tions with the discrete-time replicator for 1,000 generations
and test to see if the evolutionary trajectory matches that of
the corresponding equilibria. For signaling and noncommu-
nicative equilibria, we assume that the system has reached
the target if the dominant strategy for signalers and donors
matches that of the given equilibrium. For hybrid and pool-
ing equilibria, we compute the mean of the distribution of
strategies over time. We look for a match using these means

1While 1,000,000 may seem like a large number of parameters
to test, evaluations of the continuous model are very fast.

for dominant signaler and donor strategies, assuming that
strategies with continuously small distributions are elimi-
nated. All parameters that produce the appropriate behavior
within 1,000 generations are recorded. In Table 2 we present
the success rate for reaching particular equilibria from non-
communicative initial conditions.

We can see that honest signaling, followed by hybrid, are
the hardest type of equilibria to reach given noncommunica-
tive population distributions. This is followed by inverse
honest signaling and pooling II (where donor strategies are a
mix ofDA andDQ against SN ) equilibria. We observe that
of the 1,000,000 parameter sets generated for each, less than
10% were able to reach any of these target equilibria. It is
not particularly intuitive that inverse honest signaling equi-
libria are easier to reach than the honest signaling equilibria.
However, we note that in order to reach an inverse honest
signaling equilibrium the system must pass through a con-
figuration like that of a pooling equilibrium. The pooling
equilibrium that it passes through is the SN and DA/DQ
profile. Additionally, it can be seen that it is easier to reach
an hybrid equilibrium than an honest signaling equilibrium
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Figure 6: Results for hybrid equilibria.

Equilibrium type Success rate
Honest signaling 0.0027

Inverse honest signaling 0.0628
Pooling I 0.9996

Pooling II 0.0969
Hybrid 0.0129

Table 2: Success rate for reaching the appropriate equilib-
rium from non-communicative initial conditions. Rates are
computed based upon 1,000,000 randomly generated param-
eters that satisfy the conditions of the respective equilibria.

from non-communicative initial conditions.

Infinite and Finite Populations
We are interested in the emergence of signaling, as such
all simulations are initialized with populations of primarily
non-signalers and non-donors. The populations are evolved
for 1,000 iterations for both infinite and finite populations.
For each equilibria, 200 parameter sets are randomly chosen
from those that reached target in the previous search. Then
each evolutionary configuration is evaluated on a given pa-
rameter set. Finite populations are repeated 10 times and
averaged.

We measure the distance from the true equilibrium with
the expected number of interactions given the current popu-
lation distributions. This is denoted as

I(SX,DX) =
|SX| ∗ |DX|∑

Si,Dj

|Si| ∗ |Dj|

where SX is the signaler strategy of interest, DX is the
donor strategy of interest, Si ∈ {ST, SH, SA, SN}, and
Dj ∈ {DS,DQ,DA,DN}.

We take the mean for each expected interaction over time
for both the continuous and finite models. For finite popula-
tions we look at population sizes of 100 and 1,000, and tour-

nament sizes of 2, 7, and 10. These population sizes span
the order of magnitudes that are generally used in studies
of the emergence of signaling. Likewise, these tournament
sizes span the range commonly used in such studies.

Figures 4 and 5 suggest that the finite model is a good
approximation of the continuous model for Nash equilibria.
The expected interactions for finite populations of both sizes
roughly estimate those calculated in the continuous model
(labeled infinite on the x-axis) for tournament sizes greater
than 2. Figure 4 suggests that the finite populations ap-
proach the behavior of the infinite population as tournament
size increases. Tournaments of size 2 perform particularly
poorly relative to bigger tournament sizes in the case of sig-
naling equilibria. This is counter to Reggia et al.’s finding
where they see that smaller tournament sizes actually lead
to higher proportions of signalers in the population (Reg-
gia et al., 2001). This leads us to suggest that in their case
the complex environment and agent architecture may have a
bias towards signaling behavior.

In Figure 6 we see that the finite model fails to capture the
complex dynamics of hybrid equilibria. This is because hy-
brid equilibria are actually collections of polymorphic mixed
Nash equilibria. It has previously shown that tournament se-
lection cannot converge to polymorphic Nash equilibria in
both one- (Ficici et al., 2005) and two-population coevolu-
tion (Ficici, 2006). This leads us to question the significance
of the dynamics observed in previous studies of the emer-
gence of signaling. If it is not possible for a simple evolu-
tionary model with tournament selection to maintain a poly-
morphic Nash equilibrium, then what are the complex dy-
namics that have previously been observed (Bullock, 1997)?
We suggest that these types of dynamics may be a direct re-
sult of the spatial selection mechanism based upon previous
findings that spatial games can produce behaviors ranging
from chaotic dynamics to asymptotically predictable popu-
lation dynamics (Nowak and May, 1992; Roca et al., 2009).



Conclusion
We have presented a coevolutionary study of the effects of
evolutionary mechanics on the emergence of signaling. In
doing so we quantify Bullock’s previous finding that the ex-
istence of a signaling equilibrium does not imply that it can
be reached from an initially non-communicative state (Bul-
lock, 1997). It is also shown that it is significantly easier for
signaling to evolve from non-communication to an inverse
signaling equilibrium than to the signaling equilibrium tra-
ditionally studied in the SPS game. Recall that the difference
between these two signaling equilibria is when the signal is
sent, while the donor adopts the response corresponding to
honest signaling. This observation aligns with the signal of
the peacock’s tail to the peahen, which is a demonstration of
virility not aridity.

Finally, we have shown that finite population models with
tournament selection can fail to capture the dynamics of hy-
brid equilibria, one of the most attractive dynamics of the
SPS game. These equilibria (which are actually families of
polymorphic Nash equilibria) follow a spiraling trajectory
that switch between honest and deceptive signaling. The
inability of tournament selection to maintain polymorphic
Nash equilibria is already known (Ficici et al., 2005). The
enhanced reachability of hybrid equilibria relative to tradi-
tional signaling ESS’s suggests that the generalizability of
evolutionary models which fail to capture this phenomenon
are limited.
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