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1 Introduction

In this paper I don't assume the reader has extensive knowledge of stock markets

and the portfolio selection problem. It is therefore a good idea to start with a

general introduction to general portfolio theory.

The seminal work developing the modern portfolio theory is credited to

Harry Markowitz (see [6]), co-winner of the 1990 Nobel prize in economics.

Markowitz's approach begins by assuming that an investor has a given sum of

money to invest at the present time. At the end of the holding period (the length

of time the money will be invested), the investor will sell the securities that were

purchased at the beginning of the period and then either spend the proceeds

on consumption or reinvest the proceeds in various securities. At the beginning

the investor must make a decision on what particular securities to purchase and

hold until the end of the period. Because a portfolio is a collection of securities,

this decision is equivalent to selecting an optimal portfolio from a set of possible

portfolios, often referred to as the portfolio selection problem.

Understanding the portfolio problem as a decision problem under risk, showed

to be extremely fruitful. Subsequently, Sharpe, Lintner and Mossin developed

the Capital Asset Pricing Model (CAPM) which represents the core of the mod-

ern capital market theory (see [4]).

2 On Portfolio Management

Before diving head �rst into Information Theoretical aspects of portfolio selec-

tion, an introduction to some basic concepts from elementary Investment Theory

is in order.

2.1 Indi�erence Curves and Risk Aversion

The method used in selecting the most desirable portfolio involves the use of

indi�erence curves. These curves represent an investor's preferences for risk and

return. It can be drawn on a two-dimensional graph, where the horizontal axis

usually indicates risk as measured by variance or standard deviation and the
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Figure 1: A high, moderately and slightly risk averse indi�erence curves.

vertical axis indicates reward as mesured by expected return. Using variance

as relevant risk measure comes from Markowitz's paper and is always used in

practice, although other possibilities have been considered (see [8].)

This de�nition gives us the following properties, assuming we have a 'rational

investor'1:

� All portfolios that lie on the same indi�erence curve are equally desir-

able to the investor (even though they have di�erent expected returns

and variance.) An obvious implication is that indi�erence curves do not

intersect.

� An investor will �nd any portfolio that is lying on an indi�erence curve

that is "further northwest" to be more desirable than any portfolio lying

on an indi�erence curve that is "not as far northwest."

But how are the indi�erence curves shaped? Generally it is assumed that

investors are risk averse, which means that the investor will choose the portfolio

with the smaller variance given the same return. Risk averse investors will not

want to take fair gambles (where the expected payo� is zero).

These two assumptions of nonsatiation and risk aversion cause indi�erence

curves to be positively sloped and convex.

1A rational investor, when given a choice between two otherwise identical portfolios, will

always choose the one with the higher level of expected return. This is often called the

nonsatiation assumption.
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Figure 2: Graph displaying the feasible set (the dark area), the e�cient set (the

borderline between E and S is ) and some indi�erence curves. The optimal portfolio

is marked with O�.

2.2 E�cient Set

Now that we know about indi�erence curves and risk aversion, how can we

use that to select from an almost in�nite number of portfolios available for

investment?

The key lies in the e�cient set theorem, which states that an investor will

choose a portfolio from the set of portfolios that:

1. O�er maximum expected return for varying levels of risk, and

2. O�er minimum risk for varying levels of expected return.

We begin by constructing the feasible set, which represents all portfolios

that could be formed from a group of N securities. The e�cient set can now be

located by applying the e�cient set theorem to this feasible set.

This demonstrates that all the portfolios in the e�cient set are located on

the "northwest" boundary of the feasible set, often called the e�cient frontier.

Selecting a portfolio is henceforth easy, by simply plotting the investor's

indi�erence curves on the same �gure as the e�cient set and then proceed to

choose the portfolio that is on the indi�erence curve that is "furthest northwest."

An important property of the e�cient set is that it is concave, the proof of

which is outside the scope of this paper.
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2.3 CAPM

Previous sections presented a method for identifying an investor's optimal port-

folio. The investor estimates the expected returns and variances for all securities

under considerations and once that is done, he can simply pick the optimal port-

folio for his indi�erence curves from the e�cient frontier. Such an approach to

investing is often labeled normative economics, since here the investors are told

what they should do.

Now we enter the realm of positive economics, where a descriptive model of

how assets are priced is presented. This model, the Capital Asset Pricing Model

assumes that all investors use the normative approach for investing.

2.3.1 Separation Theorem

The CAPM makes the following assumptions:

� Investors evalute portfolios by looking at the variance and expected returns

over a one-period horizon.

� Investors, when given a choice between two otherwise identical portfolios,

will choose the one with the higher expected return.

� Investors are risk-averse.

� Individual assets are in�nitely divisible.

� There is a riskfree rate at which an investor may either lend or borrow

money.

� Taxes and transaction costs are negligible.

Investors are considered to be a homogeneous bunch; have the same expecta-

tions, the same one-period horizon, the same riskfree rate and that information

is freely and instantly available to all investors. This is an extreme case, but it

allows the focus to change from how an individual should invest to what would

happen to security prices if everyone invested in a similar manner.

The �rst feature of the assumptions we examine is often referred to as the

separation theorem, which states that:

Theorem 1 The optimal combination of risky assets for an investor can be

determined without any knowledge of the investor's preferences toward risk and

return.

The proof of which is pretty trivial since each person faces the same linear

e�cient set, where the investor will borrow or lend according to his/hers in-

di�erence curves, but the risky portion of each investor's portfolio (which we

will denote by T , for tangency portfolio) will be the same. The linearity of the

e�cient set is because of the riskfree lending and borrowing introduced.
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2.3.2 The Market Portfolio

From the Separation Theorem we can see that in equilibrium, every security

must be part of the investor's risky portion of the portfolio. The reason is that

if a security isn't in T , no one is investing in it, meaning that its prices will fall,

causing the expected returns of it to rise until the resulting tangency portfolio

has a nonzero proportion associated with them.

When all the price adjusting stops, the market will have been brought into

equilibrium.

� Each investor will want to hold a certain positive amount of each risky

security.

� The current market price of each security will be at a level where the

number of shares demanded equals the number of shares outstanding.

� The riskfree rate will be at a level where the total amount of money

borrowed equals the total amount of money lent.

This gives rise to the following de�nition of the market portfolio:

De�nition 1 The market portfolio is a portfolio consisting of all securities

where the proportion invested in each security correspons to its relative market

value. The relative market value of a security is simply equal to the aggreagte

market value of the security divided by the sum of the aggregate market values

of all securities.

In equilibrium the proportions of the tangency portfolio will correspond to

the proportions of the market portfolio. This tells us that the market portfolio

plays a central role in the CAPM, since the e�cient set consists of an invest-

ment in the market portfolio, coupled with a desired amount of either riskfree

borrowing or lending.

The linear e�cient set of the CAPM is known as the Capital Market Line,

which has the following equation

�rp = rf +

�
�rM � rf

�M

�
�p (1)

where

�rp = the expected return of an e�cient portfolio,

rf = riskfree rate of return,

�rM = the expected return of the market portfolio,

�M = the standard deviation of the market portfolio,

�p = the standard deviation of an e�cient portfolio.

We now know that using the CAPM we can decide whether the market price

for a stock is too high or too low by looking at the market portfolio.
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Figure 3: The Capital Market Line. M is the market portfolio and rf represents the

riskfree rate of return. All portfolios other than those employing the market portfolio

and riskfree borrowing or lending would lie below the CML.

3 Portfolio Management and Information The-

ory

Let's denote a stock market for one investment period as x = (x1; x2; : : : ; xm)t �
0, where xi is the price relative for the ith stock, i.e., the ratio of closing to

opening price for stock i. A portfolio b = (b1; b2; : : : ; bm)t; bi � 0;
P

bi = 1, is

the proportion of the current wealth invested in each of them stocks. Therefore,

the wealth increase over one investment period using portfolio b is S = b
t
x =P

bixi, where b and x are considered to be column vectors.

If we consider an arbitrary sequence of stock vectors x1;x2; : : : ;xn, we

achieve wealth

Sn(b) =

nY
i=1

b
t
xi; (2)

with a constant rebalanced portfolio strategy b.

The maximum wealth achievable on the given stocks is

S�
n
= max

b

Sn(b): (3)

Our goal is, of course, to achieve wealth as close to S�
n
as possible.

Since we generally reinvest every day in the stock market, the accumulated

wealth at the end of a n days is the product of factors, one for each day of the

market. As will be shown, de�ning a doubling rate for a portfolio is a good idea.
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De�nition 2 The doubling rate of a stock market portfolio b is de�ned as

W (b; F ) =

Z
logbtx dF (x) = E(logbtx); (4)

where F (x) is the joint distribution of the vector of price relatives.

De�nition 3 The optimal doubling rate W �(F ) is de�ned as

W �(F ) = max
b

W (b; F ); (5)

where the maximum is over all possible portfolios bi � 0.

Similarly, a portfolio b� that achieves the maximum of W (b; F ) is called a

log-optimal portfolio.

We can justify de�nition 2 by the following theorem

Theorem 2 Let x1;x2; : : : ;xn be i.i.d. according to F (x). Then

1

n
logS�n !W � with probability 1. (6)

Therefore the investor's wealth grows as 2nW
�

using the log-optimal portfo-

lio.

An import property of W is that W (b; F ) is concave in b and linear in F,

and W �(F ) is convex in F (for a proof, see [3].) That knowledge tells us that

the set of log-optimal portfolios forms a convex set.

The importance of these properties will come clear in the next section.

3.1 The Log-Optimal Portfolio

The results of the Karush-Kuhn-Tucker conditions (or KKT conditions) are in

the following theorem

Theorem 3 Assume that f(x); g1(x); g2(x); : : : ; gm(x) are di�erentiable func-

tions (satisfying certain regularity conditions.) Then

x
� = (x�1; x

�

2; : : : ; x
�

n
)

can be an optimal solution for the non-linear programming problem only if there

exist m numbers u1; u2; : : : ; um such that all the following KKT conditions are

satis�ed:

1.
�f

�xj
�
Pm

i=1 ui
�gi

�xj
� 0

2. x�
j

�
�f

�xj
�
P

m

i=1 ui
�gi

�xj

�
= 0

)
at x = x

�, for j = 1; 2; : : : ; n.

3. gi(x
�)� bi � 0

4. ui[gi(x
�)� bi] = 0

�
for i = 1; 2; : : : ;m.

5. x�
j
� 0 for j = 1; 2; : : : ; n.

6. ui � 0 for i = 1; 2; : : : ;m.
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Which gives as a corollary, that if f(x) is a concave function and g1(x); g2(x); : : : ; gm(x)

are convex functions, then x� = (x�1; x
�

2; : : : ; x
�

n) is an optimal solution i� all

the conditions of the theorem are satis�ed.

From this and the fact that we are trying to �nd an optimal solution for

b, maximizing the concave function W (b; F ) over a convex set b 2 B, we can

derive the following theorem

Theorem 4 The log-optimal portfolio b� for a stock market X (i.e., the port-

folio that maximizes the doubling rate), satis�es the following necessary and

su�cient conditions:

E

�
Xi

b�
t
X

�
= 1 if b�

i
> 0,

� 1 if b�
i
= 0.

(7)

This tells us that the expected value of the ratio between a price relative i

and the corresponding wealth relative is equal to 1 if the i component of the

portfolio is non-zero, and � 1 if the component is zero.

Two interesting things can be derived from this theorem. The �rst is that

E log
S

S�
� 0, for all S , E

S

S�
� 1, for all S (8)

where S� = b
�
t

x is the random wealth resulting from the log-optimal port-

folio b� and S is the wealth resulting from any other portfolio b.

We have now shown that the log-optimal portfolio, in addition to maximizing

the asymptotic growth rate, also maximizes the wealth relative for one day.

Another consequence is that the expected proportion of wealth in stock i

at the end of the day is the same as the proportion invested in stock i at the

beginning of the day. Stated more precisely as

E

�
b�
i
Xi

b�
t

X

�
= b�iE

�
Xi

b�
t

X

�
= b�i 1 = b�i :

But what if an investor were to use causal investment strategy? We can

prove that with probability 1, the conditionally log-optimal investor will not do

any worse than any other investor who uses a causal investment strategy. Let

Sn =

nY
i

b
t

i
Xi (9)

be the wealth after n days for an investor who uses portfolio bi on day i. Let

W � = max
b

W (b; F ) = max
b

E logbtX (10)

be the maximal doubling rate and let b� be a portfolio that achieves that rate.

From this we get

E logS�
n
= nW � � E logSn; (11)
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that is, b� (satisfying equation 7) maximizes the expected log wealth and

that the wealth S�n is equal to 2nW
�

to �rst order in the exponent, with high

probability.

In fact, we can prove a much stronger result, which shows that the log-

optimal portfolio will do as well or better than any other portfolio to �rst order

in the exponent.

3.2 Side Information

What happens if we do not have the correct information to select our portfolio?

This is equivalent to choosing b�
g
, corresponding to probability density g(x),

while b�
f
(corresponding to probability density f(x)) is the correct one.

We can prove, given that x1;x2; : : : ;xn i.i.d. f(x), that

�W = W (b�
f
; F )�W (b�

g
; F ) � D(f jjg):

Which tells us that the increase�W in doubling rate due to side information

Y is bounded by the mutual information between the side information Y and

the stock market X.

�W � I(X;Y ):

3.3 Stochastic Markets

The previous results were derived assuming i.i.d. markets, but can be extended

to time-dependent markets.

In stochastic markets, it has been shown, with increasing levels of generality

on the stochastic process, that

lim
n!1

1

n
ln
Sn

S�n
� 0; (12)

for every sequential portfolio. This tells us that b�(F ) is asymptotically optimal

in this sense, and W �(F ) is the highest possible exponent for the growth rate

of wealth.

4 Universal Portfolios

In this section a portfolio selection procedure will be considered with the goeal

of performing as well as if we knew the empirical distribution of future market

performance.

The universal adaptive portfolio strategy is the performance weighted strat-

egy speci�ed by

b̂1 =

�
1

m
;
1

m
; : : : ;

1

m

�
; (13)

b̂k+1 =

R
bSk(b)dbR
Sk(b)db

; (14)
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where

Sk(b) =

kY
i=1

b
t
xi

and the integration is over the set of (m� 1)- dimensional portfolios

B = fb 2 Rm : bi � 0;

mX
i=1

bi = 1g:

The wealth Ŝn achieved from the using the universal portfolio is

Ŝn =

nY
k=1

b
t

k
xk :

From this we see that the portfolio b̂1 is uniform over the stocks, and the

portfolio b̂k at time k is the performance weighted average of all portfolios

b 2 B.

As in the previous section we have

S�n = max
b

sn(b) = max
b

nY
i=1

b
t
xi = enW

�(Fn); (15)

where Fn denotes the empirical distribution of x1; : : : ;xn, i.e. it places mass 1
n

at each xi.

We can easily prove that S�n exceeds the maximum of the component stocks,

the arithmetic mean, the geometric mean and that S�
n
(x1; : : : ;xn) is invariant

under permutations of the sequence x1; : : : ;xn.

� The target wealth exceeds the wealth from best stock:

S�
n
� max

j=1;::: ;m
Sn(ej): (16)

� The target wealth exceeds the Dow Jones (or the arithmetic mean):

S�
n
�

mX
j=1

�jSn(ej); (17)

where �j � 0;
P

�j = 1.

This assumes buy-and-hold strategies b = ej = (0; : : : ; 0; 1; 0; : : : ; 0),

where ej is the j-th basis vector.

Since the wealth Ŝn, resulting from the universal portfolio, is the average of

Sn(b), or
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Ŝn =

nY
k=1

b̂
t

k
xk =

R
Sn(b)dbR

db
; (18)

where

Sn(b) =

nY
i=1

b
t
xi;

we can show that for the universal portfolio

Ŝn �

0
@ mY

j1

Sn(ej)

1
A

1=m

; (19)

or, the wealth from the universal portfolio also exceeds value line index.

We can also prove that Ŝn is invariant under permutations of the sequence

x1; : : : ;xn. This invariance entails that a stock market crash will have no worse

consequences for wealth Ŝn than if the bad days of that time had been sprinkled

out among the good.

The important question remains, how does Ŝn=S
�

n behave? For a portfolio

of two stocks, we consider the arbitrary stock vector sequence

xi = (xi1; xi2) 2 R2
+; i = 1; 2; : : : : (20)

The portfolio choice can be transformed into a choice of one variable, namely

b = (b; 1� b); 0 � b � 1; (21)

and similarly Sn(b) becomes

Sn(b) =

nY
i=1

(bxi1 + (1� b)xi2); 0 � b � 1. (22)

Let's de�ne

J�
n
= �W

00

(b�
n
) =

Z
(xi1 � xi2)

2

(b�
t

n
x)2

dFn(x): (23)

Jn is generally known as the curvature or volatility index of a portfolio.

It can be shown that for any x1;x2; : : : 2 R
2
+ and for any subsequence of

times n1; n2; : : : such that the doubling rate Wn(b) satis�es the condition
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Figure 4: Performance of Iroquois Brands Ltd. and Kin Ark Corp. stock during the

time period from 1963 to 1985.

W
00

n
(b�
n
)! W

00

(b�); (24)

and where W (b) achieves its maximum at b� 2 (0; 1) the following holds true

Ŝn

S�
n

�
s

2�

nJ�
n

: (25)

This means that the universal wealth is within a factor C=
p
n of the (pre-

sumably) exponentially large S�n. In fact, it can be further shown that every

additional stock in the universal portfolio costs an additional factor of 1=
p
n.

4.1 Real world example

Let's now consider how this portfolio algorithm would perform on two real

stocks. We'll consider a 22-year period (ending in 1985) of the stock of Iroquois

Brands Ltd. and Kin Ark Corp., which were highly volatile during that time

period as can be seen in �gure 4.

If an investor would have had access to this information in 1963 he could

have earned approx. 791% pro�t by buying and holding the best stock (Iroquois)

which has an ending rate of 8.915 (see �gure 4).

If we look at the performance of some constant rebalanced portfolios for

that period (see table 1), we notice that the best rebalanced portfolio is b� =
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b Sn(b) b Sn(b)

1.00 8.9151 0.45 68.0915

0.95 13.7712 0.40 60.7981

0.90 20.2276 0.35 51.6645

0.85 28.2560 0.30 41.7831

0.80 37.5429 0.25 32.1593

0.75 47.4513 0.20 23.5559

0.70 57.0581 0.15 16.4196

0.65 65.2793 0.10 10.8910

0.60 71.0652 0.05 6.8737

0.55 73.6190 0.00 4.1276

0.50 72.5766

Table 1: Constant rebalanced portfolio performance of the The Iroquois Brands Ltd.

vs. Kin Ark Corp. for di�erent portfolio strategies.

(:55; :45), which gives us wealth increase of S�n = 73:619. This is the target

wealth, which we strive to get as close to as possible.

To use the universal portfolio algorithm, described in the previous section,

we must for quantize all integrals giving us the following equations:

S�
n
= max

i=0;1;::: ;20
Sn(i=20); (26)

b̂k+1 =

P20
i=0

i

20
Sk(

i

20
)P20

i=0 Sk(
i

20
)
; (27)

and wealth

Ŝn =

nY
k=1

b̂kxk: (28)

It can be veri�ed that Ŝn can be expressed in the equivalent form

Ŝn =
1

21

20X
i=0

Sn

�
i

20

�
: (29)

Using this we can get a universal wealth of Ŝn = 38:6727 as can be seen

in �gure 5. Even though the universal portfolio gives less wealth then S�
n
it

still gives much greater wealth than what an investor could get, when given

information n days into the future.

Although these results are encouraging, the universal portfolio barely out-

performs stocks with a lockstep performance, e.g. the stocks in Coca Cola and

IBM.
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Figure 5: Performance of the universal portfolio compared to the performance of

stocks in The Iroquois Brand Ltd. and Kin Ark Corp.

5 Summary

My goal for this project was to familiarize myself with the intricacies of Portfolio

Management and in particular how Information Theory could be utilized in this

regard. This required extensive reading, both in general investment theory and

information theory. I hope that most readers will gain a greater insight into

Portfolio Managment by reading this paper.

All that remains now is to make a fortune in the stock market using this new

found knowledge. The only drawback is the the universal portfolio algorithm

does not take into account transaction fees, which are the bane of many an

investor.
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