
Aurora: A Data Stream Management System

D. Abadi┼, D. Carney§, U. Cetintemel§, M. Cherniack┼, C. Convey§, C. Erwin§, E. Galvez┼, M. Hatoun§,
 J. Hwang§, A. Maskey┼, A. Rasin§, A. Singer§, M. Stonebraker±, N. Tatbul§, Y. Xing§, R. Yan§, S. Zdonik§

┼ Brandeis University

§ Brown University
± M.I.T.

Abstract
The Aurora system [1] is an experimental data stream
management system with a fully functional prototype. It
includes both a graphical development environment, and a
runtime system.

We propose to demonstrate the Aurora system with its
development environment and runtime system, with several
example monitoring applications developed in consultation with
defense, financial, and natural science communities. We will
also demonstrate the effect of various system alternatives on
various workloads. For example, we will show how different
scheduling algorithms affect tuple latency and internal queue
lengths. We will use some of our visualization tools to
accomplish this.

Data Stream Management
Aurora is a data stream management system for monitoring
applications. Streams are continuous data feeds from such
sources as sensors, satellites and stock feeds. Monitoring
applications track the data from numerous streams, filtering
them for signs of abnormal activity and processing them for
purposes of aggregation, reduction and correlation. The
management requirements for monitoring applications differ
profoundly from those satisfied by a traditional DBMS:

o A traditional DBMS assumes a passive model where most

data processing results from humans issuing transactions
and queries. Data stream management requires a more
active approach, monitoring data feeds from unpredictable
external sources (e.g., sensors) and alerting humans when
abnormal activity is detected.

o A traditional DBMS manages data that is currently in its
tables. Data stream management often requires processing
data that is bounded by some finite window of values, and
not over an unbounded past.

o A traditional DBMS provides exact answers to exact
queries, and is blind to real-time deadlines. Data stream
management often must respond to real-time deadlines
(e.g., military applications monitoring positions of enemy
platforms) and therefore must often provide reasonable
approximations to queries.

o A traditional query processor optimizes all queries in the
same way (typically focusing on response time). A stream
data manager benefits from application specific
optimization criteria (QoS).

o A traditional DBMS assumes pull-based queries to be the
norm. Push-based data processing is the norm for a data
stream management system.

A Brief Summary of Aurora
Aurora has been designed to deal with very large numbers of
data streams. Users build queries out of a small set of operators
(a.k.a. boxes). The current implementation provides a user
interface for tapping into pre-existing inputs and network flows
and for wiring boxes together to produces answers at the
outputs. While it is certainly possible to accept input as
declarative queries, we feel that for a very large number of such
queries, the process of common sub-expression elimination is
too difficult. An example of an Aurora network is given in
Screen Shot 1.
A simple stream is a potentially infinite sequence of tuples that
all have the same stream ID. An arc carries multiple simple
streams. This is important so that simple streams can be added
and deleted from the system without having to modify the basic
network. A query, then, is a sub-network that ends at a single
output and includes an arbitrary number of inputs. Boxes can
connect to multiple downstream boxes. All such path splits
carry identical tuples. Multiple streams can be merged since
some box types accept more than one input (e.g., Join, Union).
We do not allow any cycles in an operator network.
Each output is supplied with a Quality of Service (QoS)
specification. Currently, QoS is captured by three functions (1)
a latency graph, (2) a value-based graph, and (3) a loss-tolerance
graph. The latency graph indicates how utility drops as an
answer is delayed. The value-based graph shows which values
of the output space are most important. The loss-tolerance
graph is a simple way to describe how averse the application is
to approximate answers.
Tuples arrive at the input and are queued for processing. A
scheduler selects a box with waiting tuples and executes that
box on one or more of the input tuples. The output tuples of a
box are queued at the input of the next box in sequence. In this
way, tuples make their way from the inputs to the outputs. If the
system is overloaded, QoS is adversely affected. In this case,
we invoke a load shedder to strategically eliminate
Aurora supports persistent storage in two different ways. First,
when box queues consume more storage than available RAM,
the system will spill tuples that are less likely to be needed soon
to secondary storage. Second, ad hoc queries can be connected
to (and disconnected from) any arc for which a connection point
has been defined. A connection point stores a historical portion
of a stream that has flowed on the arc. For example, one could
define a connection point as the last hour’s worth of data that
has been seen on a given arc. Any ad hoc query that connects to
a connection point has access to the full stored history as well as
any additional data that flows past while the query is connected.

The Aurora System
The Aurora system consists of the following components:

o A Java-based GUI development environment, where tuple

structures and Aurora flow networks are defined. See
Figure 1.

o A server that executes an Aurora network. The inputs and
outputs of the Aurora server are streams of tuples, delivered
over TCP/IP sockets.

o A Java-based GUI performance monitor that shows the
quality of service being provided by the server at a given
moment. See Figure 3.

All applications must provide the following to Aurora:

o A TCP/IP-based interface supplying data streams to the

Aurora server.
o A set of persistent queries (applications) that describes the

processing that the Aurora server is to perform on the input
streams. These queries are authored in the Aurora
development environment.

o A set of Quality of Service (QoS) specifications (one per
application) that specify application-specific performance
and quality requirements of the Aurora system. For
example, a QoS specification can describe the quality of a
tuple returned as a query result as a function of latency,
accuracy or the values it contains. QoS is specified in the
Aurora development environment.

o A set of applications awaiting the query results (streams of
tuples) emitted by the Aurora server. In our prototypes,
applications present Aurora output in some human-friendly
form. See Figure 2 for an example.

Novel Features
Stream-oriented query operators
Traditional DBMS query languages (e.g., SQL) are insufficient
for processing infinite streams. Aurora introduces a novel set of
operators specifically tailored towards stream processing. For
example, Aurora includes a number of window-based operators
that act on finite moving windows over input streams.
QoS specifications
QoS specifications not only serve as specifications of desired
system behavior – they also serve to drive policies for
scheduling and load shedding (described below). The overall
goal of the Aurora system is to maximize overall quality of
service from all applications.

Load shedding
Traditional RDBMS'es are designed to produce correct results
regardless of the time required to produce them. Such a goal is
ill-suited to many of the applications we've seen for stream
processing. For many stream applications, it's better to discard a
fraction of the data than to process all of it in an unacceptably
long amount of time. Aurora's scheduler uses the QoS
specifications for an application to decide when and how records
should be dropped, which can actually increase overall QoS.

Real-time Scheduling
We have developed several scheduling algorithms that reduce
scheduler and box invocation overheads as well as the use of
disk. We do this by scheduling more than one tuple at a time
(i.e., trains) through more than one box at a time (i.e.,
superboxes).

Figure 1: Aurora's development GUI

Storage Management
Our storage manager is designed for storing ordered queues of
tuples instead of sets of tuples (relations). It also combines the
storage of push-based queues with pull-based access to history.

Demonstration Details
Our demonstration will include the illustration of multiple query
specifications using the development environment GUI,
execution of some example Aurora applications (described
below), and use of Aurora performance monitoring tools to
demonstrate system internals and QoS functions.

Tracking Application
We have been working with Mitre Corporation on a military
Command and Control application. It involves the intelligent
dissemination of enemy positions on the battlefield to various
ground stations. Each ground station has a different role and
thus requires different information with different freshness
requirements. Each ground station specifies the relative
importance and the minimum update frequency for each kind of
data.
In this application, bandwidth is very limited. During periods of
high stress, the data rates can swamp the communication links.
Aurora’s job is to selectively discard or delay less important data
so that the more important data can get through in a timely
fashion.
The demonstration receives simulated position data from a
variety of sources and regarding a variety of objects (e.g., tanks,
airplanes). The purpose of the application is threefold:
1. To allow military commanders to quickly understand the

current state of the theatre. Different personnel need
different subsets of the information to do their respective
jobs. See Figure 2.

2. To alert personnel when a certain event has occurred. For
instance, when at least five enemy soldiers have crossed a
particular line on the map.

3. To show that some information is delayed in order to
service high priority items. In the interface of Figure 2,
some of the icons will move (update) frequently, and others
will seem to jump infrequently.

The Aurora prototype plus a data visualizer handles all these
needs. Figure 2 shows three different displays, where each
display is intended for a different user. Note that the parts of the

Aurora network that produce the data for the three different
displays are given different processing priorities, leading to one
display being refreshed more often than another. This is en
example of Aurora’s QoS system at work. I.e., it’s more
important for the general to know when an attack is imminent,
than for the refuelling coordinator to know about every time a
fuel truck moves.

Toxicity Monitoring Application
This application collects respiratory data from a set of fish, as
well as attributes of the surrounding water. The fish are confined
to small cages, and carbon blocks on either side of their gills can
detect small currents that are generated by muscle motion. This
current can be used to reproduce the motion of the gills. Erratic
gill motion can indicate the presence of toxins in the water.
When several fish have sufficiently abnormal readings, an alarm
is sounded, indicating that the water supply may have been
compromised.
We will demonstrate the use of Aurora to monitor the data for
interesting patterns. Some patterns will be determined by
referencing the current streams with stored reference streams.
We expect that we could actually receive live feeds from some
fish arrays in Texas if we can get an Internet connection at the
conference.

Financial Application
This application monitors streams of stock quotes. As with the
military application, the user can both view a digest of the
information, as well as be alerted when interesting events occur.
In particular, we have been working with Fidelity on several
problems that they have ranging from intelligent routing of
trades to fraud detection on transaction data.

GUI Development Environment
We’ll demonstrate the development environment by modifying
the military application (Figure 1). The editing may include
adding new arcs/boxes, deleting existing boxes/arcs, and
modifying the parameters of existing boxes. The results of the
modification will be shown in the application’s output GUI
(Figure 2).

Performance Monitoring Tools

Figure 2: Mitre application output

Aurora’s performance monitoring tools are useful for showing
how much data is in various parts of the system and its flow rate,
as well as the QoS level that Aurora is able to achieve. We’ll
show how varying the rate of input data flow affects the Aurora
network’s internal queue contents as well as the overall
delivered QoS.

Impact
Aurora, whose design was presented at VLDB 2002 [1], has
been the focus of positive attention from the industrial,
scientific, and academic sectors. We've developed a prototype
Aurora application for a defense company that easily solved a
problem that the company considered difficult. We're working

with partners in the financial and natural science fields to
develop prototype Aurora applications for those sectors as well.

REFERENCES

[1] Don Carney, Ugur Cetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Greg Seidman,
Michael Stonebraker, Nesime Tatbul and Stan
Zdonik, Monitoring Streams – A New Class of Data
Management Applications, Proceedings of Very
Large Databases (VLDB), Hong Kong, China,
August, 2002.

Figure 3: Aurora’s Performance Monitoring Tools and Simulation Input Pacing Tool

