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1 Abstract
“Time travel” in the storage system is accessing past stor-
age system states. Legacy application programs could run
transparently over the past states if the past states were vir-
tualized in a form that makes them look like the current
state. There are many levels in the storage system at which
past state virtualization could occur. How do we choose?
We think that past state virtualization should occur at a
high storage system buffer manager level, such as database
buffer manager. Everything above this level can run legacy
programs. The system below can manage the mechanisms
needed to implement the virtualization. This approach can
be applied to any kind of storage system, ranging from tra-
ditional databases and file systems to the new generation
of specialized storage managers such as Bigtable. Granted
that time travel is a desirable feature, this position paper
considers the design axis for virtualizing past states for time
travel, and asks what amounts to the question, can we sit in
first class and still have cheap fares?

2 Virtualized past states
Cheap disk means a storage system can retain past applica-
tion states and keep them around for a long time. Back-in-
time execution (BITE) is the ability of the storage system to
run read-only application programs on snapshots of the past
storage system states in addition to the current state. BITE
provides what is popularly called time travel. Traditionally
snapshots have been used to run queries over past states
(snapshot isolation [1] queries) to avoid interfering with
rapidly evolving current state, and for rapid light weight re-
covery by copy-paste or query, particulary to cope with in-
advertent user errors. BITE in addition allows to audit and
mine persistent past states in real-time, performing after-
the-fact analysis of past states, possibly using methods that
were unavailable at the time. Such abilities are increasingly
demanded by modern applications.

We want to be able to provide BITE in storage sys-
tems which support legacy applications. Therefore we want
to virtualize the snapshots of the past states in a form that
looks like the current state so that (unmodified) programs
that run on the current state can run on snapshots. This ap-
proach is in contrast, to temporal databases that introduce
an explicit time coordinate, virtualizing the current state to
look like the past state.

Figure 1 depicts how an unmodified application pro-
gram issueing get and put operations to the storage system,
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Fig. 1: Snapshot interface

interacts with snapshots. First, in (1) the get and put opera-
tions access the current state, (2) snapshot X is declared, (3)
snapshot system retains the state of an object, before a put
operation modifies the object first time following snapshot
X declaration, (4) application now runs on snapshot X, get
operation observes the object state retained for snapshot X.

Legacy applications expect to see a consistent state of a
storage system. To this end, our virtualized past states will
providecrash consistency. Crash consistency corresponds
to the state the application might see if the storage system



would have crashed and recovered. This consistency con-
dition, of course, depends on the consistency guarantees of
the original storage system without snapshot virtualization.

At any point in the system execution, an application
maydeclare a snapshot, establishing a specificnamed stor-
age system state that can be revisited subsequently in a
BITE. We think it is important for BITE to support appli-
cation controlled snapshots rather than periodic snapshots,
because only applications are in the position to recognize
which states are important. In contrast, backup systems
use periodic snapshots, as do systems that run queries on
snapshots (snapshot isolation [1] queries) to avoid inter-
ference with updates. Some applications may require fre-
quent snapshots. Support for frequent snapshots means
that taking a snapshot should be “non-disruptive”, that is,
should not unduly delay other on-going activities in the
storage system. Moreover, snapshots should belong-lived,
meaning that they should be available for BITE as long as
needed.

3 Design choices
There are many levels in the storage system at which past
state virtualization could occur. We contend that BITE is
best supported by integrating the snapshot system with a
storage system buffer manager. The buffer cache is well-
suited to redirecting BITE code to access past block states,
and legacy code above this level can run unmodified. This
approach can be applied to any kind of storage system, from
databases to file systems.

The buffer manager exposes the current storage system
state in the form of groups of blocks or database pages; a
buffer manager that virtualizes past states for BITE does the
same, but can also expose past states at snapshot points.

When a snapshot is declared, the states included in a
snapshot are not only states on disk but also the states of
the dirty pages in the buffer at the declaration point, pos-
sibly backed by a recovery log. The virtualization design
must therefore deal with organizing versions of blocks in
the cache and on disk, choosing when to write those ver-
sioned blocks to disk, and providing a way to find them
again when BITE is later requested.

A storage stack contains many buffer managers; for
example, there may be write caches in a disk controller,
file system, and database in a single system, layered one
over the other. Integrating snapshots at the level nearest the
applications requesting snapshots provides the best perfor-
mance. Snapshot crash consistency condition assumed by
the application can be enforced with less overhead because
capturing snapshot states does not require immediate (syn-
chronous) flushing to lower-levels. The virtualization may
be able to keep or efficiently reconstruct past states in the
buffer cache, avoiding reading past states back from disk as
we explain below.

Here are the questions one could ask when evaluat-

ing an implementation of past state virtualization. How
fast will the BITE applications run? What impact will
past state virtualization have on normal application perfor-
mance? The relative importance of BITE and normal oper-
ation performance will affect the design choices.

Caching Snapshot Blocks An update to a block follow-
ing a snapshot declaration could overwrite a past state that
belongs to a snapshot. Writing the snapshot block to disk
before overwriting it preserves the needed snapshot state
but could interfere with normal application performance
when snapshots are frequent. Virtualizaton at the buffer
manager level can manage a “versioned” buffer cache that
holds multiple versions of the same block. This enables de-
fering snapshot block writes and reduce the impact to nor-
mal applications at the expense of the extra buffer cache
memory to hold the versioned blocks. The cached ver-
sioned blocks could be lost in a crash. In the buffer cache
a snapshot system can take advantage of the storage system
recovery system to recover the snapshot blocks needed to
insure snapshot crash consistency.

In a database buffer cache, snapshot crash consistency
can be guaranteed simply by writing snapshot declara-
tion points into the database recovery log and maintaining
a write ordering invariant that guarantees that past block
states needed for a snapshot are written to disk and become
durable before they are overwritten in the current database
state on disk by a later update. This snapshot write order-
ing invariant dovetails the write-ahead-log invariant, and
is calledwrite-ahead-snapshot invariant (WAS, for short).
WAS insures that the database recovery log containing the
needed snapshot states is not garbage collected before the
needed snapshot blocks have been written to the snapshot
disk. This way, if there is a crash, any unwritten past states
of a block that belong to a crash consistent snapshot can be
(re)captured in the buffer cache during the recovery of the
unwritten current state, in the same way they are captured
during normal operation. This assumes, of course, that the
recovery log is replayed “as is”, without pre-processing.

Figure 2 depicts a sequence of steps showing how
a snapshot virtualization layer, integrated within a buffer
cache, manages a versioned cache and enforces the WAS
invariant. The snapshot system depicted in the figure
stores the snapshot blocks separately from the current state
blocks, on a different disk. We discuss the pros and cons
of co-locating current state blocks and snapshot blocks at
the end of this section. We assume, the sequence of steps in
the figure is immediately preceeded by a snapshot X decla-
ration. At this point in the execution, (1) the current state
of the cached pages P, Q belongs to snapshot X, (2) snap-
shot versions of P, Q are being retained in the cache when
pages P, Q are updated, (3) the snapshot versions of P, Q are
being written to the snapshot disk (background writes), en-
forcing WAS invariant, that is, ahead of writing in the step
(4) the latest versions of P, Q to the database disk (back-
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Fig. 2: Versioned cache and WAS invariant

ground writes).
Same approach can be applied in a file system, exploit-

ing file system recovery mechanism for low-cost capture of
consistent snapshots. Not all applications manage their own
page cache; but, many utilize the file system interface. The
highest-level buffer manager relative s to such applications
is in the file system, so we describe the technique for virtu-
alizing snapshots inside the file system cache. Like adding
snapshots to a database buffer cache, we make the file sys-
tem cacheversioned. Unlike a database, which provides
durability guarantees for all committed data, a file system
generally only promises metadata consistency; so, if multi-
ple versions of a block are in the cache, then snapshot data
blocks may be lost after a crash. We must ensure that no
snapshot is inconsistent (that is, unreadable by file system
tools) and that, while data may be lost from a snapshot,
newer data created after a snapshot declaration never be-
comes part of that snapshot.

A file system that keeps a metadata journal must se-
rialize snapshot declarations into the journal. This way,
if there is a crash, past versions of the meta-data blocks
needed for snapshots can be re-captured during meta-data
recovery. In a file system that maintains meta-data consis-
tency using a soft update technique [5], that is, by carefuly
ordering defered writes to disk, the careful ordering must
be extended to encompass snapshot declarations and snap-
shot block writes. The same holds for the generalization
of the soft update technique that aims to defer any storage
system disk updates, without violating crash consistency,
by tracking general dependencies on deferred disk updates
and making sure not to expose system effects dependent on
deferred updates before the updates become durable [6].

In these dependency tracking systems, maintaining the
WAS invariant, that is, making sure that a page P that be-
longs to a snapshot becomes durable on the snapshot disk,
ahead of it becoming unrecoverable from the storage sys-
tem disk version, allows the snapshot system to capture the
needed snapshot states during storage system recovery in a
way that preserves snapshot consistency guarantees. Note
that a past state of page P in the database becomes unrecov-
erable as a snapshot state, when a storage system overwrites
the page needed to recover the snapshot state and garbage
collects the recovery log.

Without WAS, it might be possible for BITE to not find
any past versions of a block, and so use the current-state
block, which could be newer than the snapshot. By writing
snapshot states first, we ensure that, snapshots consist of
blocks that would be valid post-recovery if a crash occurred
right after the snapshot was declared.

The write ordering requirement can be relaxed if the
versioned write cache is located in non-volatile storage,
since past states become durable once they are scheduled
for write and will not have to be recovered after a crash.

Copying Snapshot Blocks to Disk Snapshot state can
physically reside on disk together with the current state, or
apart from the current state on a different disk, possibly ina
different host. Snapshot state can also have different phys-
ical representations. It can be represented as a complete
materialized replica of the past storage system state, or a
log of changes, or a combination of both.

A common snapshot implementation approach is copy-
on-write. There can be two types of copy-on-write. The
type of copy-on-write determines whether the past is stored
apart or together with the current state. A copy-on-write
that copies the older data into a snapshot log before the
new data is written, results in snapshots that aresplit from
the current state. Examples of this approach are the vol-
ume snapshots in VSS [9], DBMS snapshots in SNAP [13],
file system snapshots [17, 16], and controller CDP snap-
shots in [3], to mention a few. A copy-on-write that uses a
no-overwrite approach, copying the new data elswhere and
leaving the older data in place, results in snapshots that re-



side together with the current state. The commercial prod-
uct NetApp filer [2] employs the WAFL file system to take
no-overwrite snapshots, and virtualizes past states to allow
mounting of snapshots for time-travelling access by legacy
applications. Examples from the research community in-
clude CVFS [15] and ext3cow [7].

In the split approach, every application write may incur
up to two overhead i/o operations. A read operation may be
needed to retrieve the old data and a write operation may be
needed to write the old data to the snapshot log. The extra
disk i/o may impact normal application performance. The
extra write cost can be mitigated if the snapshots are stored
on a different disk, the writes to the snapshot log may occur
in parallel with updating the current state, partially “hiding”
the impact of snapshots. A buffer cache that can reference
multiple block versions, can also reduce or eliminate the
need to read old data from disk by keeping old versions in
the cache (possibly in a compressed form) until they are
written to the snapshot log.

The no-overwrite snapshot approach does not require
extra i/o to store the past disk block states. However, it
raises a different performance isssue. The past states re-
siding with the current state decluster the current state on
disk causing performance degradation. Regaining the per-
formance requires periodic re-clustering in the current state,
similar to cleaning (garbage collection) in log-structured
file systems. Studies show [10] that re-clustering can be
disruptive, unless done during downtime.

Compared to retaining a full copy (mirroring) of the
current state for a snapshot, the copy-on-write approach
reduces the total disk space consumed for a collection of
snapshots. The storage optimization, however, comes at
a cost as it reduces the performance of BITE. Withreally
cheap disk, mirroring (full copy) might at first blush seem
to be more attractive. Because the reads can be striped, the
load at the disk is actually less than without mirroring. The
wrong thinking is that the cost of the disk isn’t just the pur-
chase price, but also the power consumption and rack or
machine box space; full copies remain expensive.

Indexing snapshot Blocks The snapshot system has to
find the blocks that belong to a given snapshot to run BITE.
In the no-overwrite snapshot approach, the logical to phys-
ical block map for the current state that has existed at the
snapshot declaration point can be used by BITE to find the
blocks as the past states remain in place [2]. In contrast, in
the split snapshot approach, the snapshot block location is
determined over time as blocks that belong to a given snap-
shot move to the snapshot log from the current state, so the
block location has to be tracked dynamically [13, 7, 17].

4 VSS and SNAP
A snapshot system that virtualizes past states for BITE
has many similarities with a snapshot system for backup,
but there are important differences. We briefly consider
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how the difference in requirements between BITE and
backup translate into different design choices in two sys-
tems: a commercial high-performance backup snapshot
service VSS and an experimental snapshot system SNAP.
Both VSS and SNAP provide snapshots in existing storage
systems that update data in place and therefore use the split
snapshot approach.

4.1 VSS

VSS (Virtual Shadow Copy Service) is a commercial snap-
shot implementation in the Microsoft Windows operating
system. The VSS service coordinates the actions of are-
questor, one or moreproviders, one or morewriters, and
the NTFS file system. Therequestor is an application re-
questing creation of a snapshot. Aprovider actually cre-
ates and maintains the snapshot either by copy on write
or mirroring. Providers may be implemented as software
(the operating system includes a copy-on-write volume fil-
ter driver) or external storage hardware. Awriter is an ap-
plication such as SQL Server or operating system compo-
nent such as the registry that wishes to participate in snap-
shot creation. VSS is implemented below the NTFS buffer
manager, that is, below the highest buffer manager for these
applications. In the storage stack depicted in In Figure 3
VSS corresponds to the Volume Snapshot layer.

The VSS coordination ensures that the snapshots are
consistent. Critical application, operating system, and file
system metadata are flushed to disk prior to the split of the
snapshot by the provider. The coordination is optimized to
minimize the realtime nature of that flush, minimizing the
time that all writes are frozen by the operating system.

4.2 SNAP

SNAP [13, 14] is an experimental split snapshot system for
a transactional storage system Thor [4]. SNAP supports
real-time ad-hoc BITE-based analysis of long-lived high-
frequency snapshots. The system retains consistent snap-
shots, virtualizing past states at the highest buffer manager



level, residing in the top layer of the storage stack in Fig-
ure 3. SNAP manages a versioned buffer cache so that
snapshot pages can be captured without the need to quiesce
the database, avoiding the disruption of the database in the
short-run. The cache stores the versioned modifications in
a compact form (modified objects) reducing the memory
overhead for versioned blocks to below 10%. The snap-
shot system incurs a 4% performance penalty in the storage
system on standard workloads [13].

SNAP needs an efficient way to find the blocks that
belong to a given snapshot that performs well even when
snapshots are frequent and long-lived (multi-year). Some
split snapshot systems [8] use the recovery log as the snap-
shot store and “roll back” to a consistent snapshot. Such
solution is acceptable in a short-lived snapshot system but
would be inefficient in a long-lived system. SNAP, instead,
uses a new approach. It indexes the snapshot blocks at low-
cost by writing themappings of the snapshot blocks into a
sequential log as it copies snapshot blocks to the snapshot
store.

Scanning block mappings to find a block is faster than
scanning a recovery log but a mapping scan can be still slow
if some database blocks are modified infrequently, since
the scan has to pass over many repeated mappings of the
frequently modified blocks before finding mappings for in-
frequent ones. Yet, both infrequently and frequently mod-
ifed data is common. The code running on a snapshot in
real-time has to wait for the infrequently modified blocks.
SNAP uses a new indexing method called Skippy [12] that
hierarchically builds condensed persistent summaries of the
mapping log, with duplicate entries removed, and links the
summaries into the mapping log at regular intervals. Slow
scans can now proceed faster over these lower-resolution
summaries. Skippy brings down the delays for code run-
ning over long-lived snapshots in real-time to become com-
parable to short-lived snapshots. It is efficient both in the-
ory and in practice, showing a significant (19 fold) perfor-
mance improvement in the SNAP system [11].

BITE snapshots differ from backup snapshots in their
long-term storage costs. Storing long-lived high-frequency
snapshots can become costly because, while disk is cheap,
power, space, and administration costs for high volume
of snapshots over long duration can be high. Moreover,
some snapshots are less important that others to applica-
tions. SNAP allows applications to specify the relative
importance of snapshots and exploits the copying of past
states in split snapshots to organize on-the-fly the snapshot
storage according to importance. This organization enables
low-cost storage management functions useful in long-lived
systems, such as eventual selective garbage collection of
snapshots, that have minimal impact on the normal storage
system performance [14].

5 Conclusion
Virtualizing the past states of a storage system as they are
viewed by thehigh-level buffer manager (such as a database
buffer manager) has several benefits. Snapshot consistency
can be maintained by caching snapshot blocks in memory,
exploiting the recovery mechanisms in the buffer manager
that insure storage systems crash consistency. BITE is pos-
sible because the buffer manager can virtualize snapshots
to provide past state access identical to current state access.
These benefits come at the cost of implementation effort
for different high-level buffer managers, and less general-
ity. A short-lived snapshot system such as VSS, intended
for backup, implemented below the file system buffer man-
ager, with the goal of serving many applications, is more
general.

Long-lived, low-impact snapshots with high-
performance BITE are not a free ticket. However,
the benefit of time traveling with legacy (and new!)
programs in the distant and near past over interesting,
application-determined snapshots suggests that we can
provide a first class flight for a coach price even in systems
that generate large numbers of long-lived snapshots - if we
virtualize past state inside the high-level buffer manager.
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