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Abstract

We present a new lower complexity approach for content based image retrieval
based on a relative compressibility similarity measure using VQ codebooks em-
ploying feature vectors based on color and position. In previous work we have
developed a system that employs feature vectors that are a combination of color
and position. In this paper, we present a new approach that decouples color and
position. We present this approach as two methods. The first trains separate
codebooks for color and position features, eliminating the need for potentially
application specific feature weightings during training. The second method
achieves nearly the same performance at greatly reduced complexity by parti-
tioning images into regions and training high-rate TSVQ codebooks for each
region (i.e., position information is made implicit). Features extracted from
query regions are encoded with the corresponding database region codebooks.
The maximum number of codewords that a database region codebook may con-
tain is determined at runtime and is a function of the query features. Region
codebooks are then pruned appropriately before encoding query features. Ex-
periments performed on the COREL image database show this new approach to
provide almost equivalent retrieval precision to our previous method of jointly
trained codebooks (and an improvement over previous methods) at much lower
complexity.

1 Background

With the recent proliferation of digital images, there is a need for information systems
that can organize and store images using models which support content based queries.
In the query-by-example setting (Eakins and Graham [4]), a user presents the system
with a query image and the system responds by retrieving a set of database images
with (visually) similar content. Given the discriminative power of color features and
the simple histogram model, global color histograms which are relatively invariant to
spatial transformations such as translation and rotation, have been effectively used
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for CBIR related tasks (Swain and Ballard [10], Faloutsos et al. [5]) However, global
color histograms, because of their sensitivity to bin width and bin placement, have a
drawback: if images with different statistical properties (classes) are later added to
the database, the histogram colors (labels) may need to be recomputed to maintain
retrieval precision. When dealing with varying databases (the web, for example), it
can be advantageous to use models generated individually for each image.

Vasconcelos [12] uses finite Gaussian mixture models (GMM) to represent image
densities and maximum-likelihood (ML) classifiers for retrieval, i.e the most similar
image (class) is the one that maximizes the posterior probability of the database image
(class) given the query image. Image similarity is computed using an approximation,
the asymptotic likelihood approximation (ALA), of the Kullback-Liebler divergence
between two Gaussian mixtures. Jeong and Gray [8] introduced minimum distortion
image retrieval (MDIR) using GMMs where, instead of comparing image densities,
the total query distortion is computed by encoding the query features with database
GMM. Database images are ranked based on this distortion, and experiments show
that MDIR outperforms ALA in terms of retrieval precision, albeit at higher com-
plexity. We introduced a similar approach using VQ codebooks and simple mean
squared error (MSE) distortion [1]. Images are ranked based on the MSE when query
features are encoded with database image codebooks. This can be viewed as the pro-
totype 1-nearest neighbor (1-NN) rule [3] in an unsupervised learning setting where
instead of assigning a label to a query vector, a MSE score is assigned. Experiments
measuring retrieval precision show that for the MDIR similarity criteria, VQ models
compare well with GMMs while operating at a lower complexity [2]. We also im-
plemented a simple extension of this method which considers position information.
Position features consisting of the XY coordinates of an image block are appended
to color features for that block and a VQ codebook is trained. Suitable weightings
for the position features are determined empirically and it was found that by using
position features for retrieval, there was an overall modest improvement in retrieval
precision for a minor increase in complexity (feature vector dimension increases by
2), while at the same time providing “insurance” where it makes little difference for
many classes but can yield significant improvements for some.

In this paper, we present a new approach that decouples color and position infor-
mation. The first method trains separate codebooks for color and position features,
eliminating the need for specifying feature weighting during training and allowing
for potentially application specific feature weightings during retrieval. The second
method achieves nearly the same performance at greatly reduced complexity by par-
titioning images into regions and training high-rate TSVQ codebooks for each region.
Global similarity is defined as the sum of the similarities for each region. However,
instead of directly encoding query features with the database codebook for the corre-
sponding region, we apply a preprocessing step which limits the maximum number of
codewords contained in a particular region codebook during encoding. This method
can be viewed as related to the work by Stricker and Dimai [9] where images were
represented by fuzzy, partially overlapping regions. Feature vectors consisting of the
first three color moments in the HSV color space are extracted from each region and
retrieval is performed by computing the sum of weighted differences between color
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feature moments. Vaisey and Gersho employed segmentation based image compres-
sion where each region was associated with a class and a distinct coding procedure
was used for each class [11].

2 VQ based Image Similarity

Vector quantization (VQ) is a well known technique for signal compression [6]. Given
a set of training vectors, a training algorithm determines a set of vectors (codewords)
that constitute a codebook. Compression is achieved in representing a source vector
by transmitting or storing the index of the codeword that it is closest to. For our
purposes, VQ codebooks for each database image are trained using Lloyd clustering,
and similarity is determined by how well a given database codebook encodes query
image feature vectors. Specifically, given a query image A and a database image B,
the system computes a score which is defined as the mean squared error when the
features extracted from image A are encoded with image B’s codebook:

s(A, B) =
1

N

N∑

i=1

argmin
j

‖(ai − bj)‖W, (1)

where ai, bj ∈ Rk, {bj}M
j=1 is the codebook for image B, {ai}N

i=1 are the feature vectors

from query image A, W ∈ Rk×k is a weight matrix and ‖x−y‖W
def
= (x−y)tW(x−y).

2.1 Separate Training with Color-Position Codebooks

In our previous work [2], we extended the basic VQ approach to incorporate position
information. Position features consisting of the XY coordinates of an image block
are appended to color features extracted from that block. Full search VQ codebooks
are then trained on these joint features. The key parameters: feature weighting and
codebook size were determined empirically. Although experimentally, this method
improved retrieval precision, it is not clear if joint training of disparate features uses
the discrimination provided by each feature type optimally. Also, such feature feature
weighting may be data dependent. Therefore, in order to avoid the feature weighting
problem during the training phase, separate codebooks are trained for color and
position features; that is, we can assign a set of position codewords to each color
codeword. We begin by training a color codebook by considering only the color
features of feature vectors in the training set. Given a color codeword, we then train
a position codebook by considering only the position features of all feature vectors
that map, based on their color features, to this color codeword. Thus, associated with
every color codeword, there is a set of position codewords. When encoding a given
a query vector, the best color position match is the one that jointly minimizes the
weighted color and position distortion:

s(A, B) =
1

N

N∑

i=1

argmin
j,k

{
‖(a(c)

i − b(p)
j )‖W(c) + ‖(a(p)

i − b(p)
jk )‖W(p)

}
, (2)
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where a(c)
i and a(p)

i are the color and position features (sub-vectors) respectively for
feature vector a, W(c) and W(p) are the color and position weights respectively and
k ∈ {1, . . .M (p)

j } with M (p)
j the number of position codewords associated with color

j. The double index b(p)
jk refers to the k-th position codeword for color codeword

j. In terms of complexity, this method is cheaper than having an unstructured VQ
codebook of size M1M2 with M1 colors and M2 positions per color because the color
distortion is fixed for different positions associated with a given color codeword.

2.2 Region VQ

Our second method partitions images into regions and trains high-rate TSVQ code-
books for these regions. Within a given region, spatial color distribution is ignored
by training codebooks only on color features. Codebooks are trained by successively
splitting leaf nodes with the largest distortion until the desired number of leaf code-
words is reached. The global score is computed by summing the individual scores for
each region:

s(A, B) =
r∑

i=1

wi

|Ri|

|Ri|∑

j=1

argmin
k

‖aij − bik‖, (3)

where r is the number of regions in an image, |Ri| is the number of feature vectors
in region Ri, {bik}Mi

k=1 is image B’s (color only) codebook of size Mi for region Ri,

{aij}|Ri|
j=1 is the set of query features from image A’s region Ri, and wi is the weight

to be assigned to region Ri. Before encoding query features, region codebooks are
pruned depending upon the query and region. A single parameter, query threshold,
is used to determine the size to which a region codebook must be pruned. Given
a query image and a query threshold, TSVQ codebooks are trained for each query
image region such so that the MSE for each region is less than the query threshold.
The sizes of the resulting region codebooks determine the sizes for the corresponding
pruned database region codebooks.

The following steps summarize the querying process for an arbitrary region R with
query features A = {ai}|R|

i=1 and database codebook B = {bj}M
j=1.

• Train a region codebook of size M ′ using the query feature set A, such that the
MSE is less than the query threshold.

• Prune the database image’s region codebook B to size M ′. The pruning algo-
rithm merges siblings u and v with parent w such that D(w)− (D(u)+D(v)) is
minimal amongst all siblings. Where D(n) is the (training) distortion at node
n and is stored in the codebook.

• Encode query features A with the pruned region codebook B′ = {bj}M ′
j=1 using

full search as defined in Equation 3.
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Figure 1: Sample database images for Region VQ (Tigers no. 24 and Horses no. 77);
the figure to the right of each image shows the region boundaries and the prune sizes
for each region corresponding to a query threshold of 1500.

2.3 MDIR using GMM

We compare the two methods presented here with the minimum distortion image
retrieval (MDIR) method of Jeong and Gray. MDIR uses finite Gaussian mixture
models (GMM) to represent database image densities, and determines similarity based
on the distortion when query image features are encoded with database GMMs:

s(A, B) =
N∑

i=1

argmin
j

ρ(ai, πj, gj) (4)

where {ai}N
i=1 are the query features, {πj , gj = N (µj,Σj)}M

j=1 is a finite Gaussian
mixture model with M components with priors πj and component densities which are
multivariate Gaussian with means µj and covariance matrices Σj . Database GMMs
are trained using Gauss mixture VQ clustering [7]. The cost function, ρ(ai, πj, gj) =
(dLL(ai, gj) − ln πj) is the penalized log-likelihood, where

dLL(ai, gj) =
1

2

(
k ln(2π) + ln det(Σj) + ‖ai − µj‖Σ−1

j

)
.

3 Experiments

For experiments, we used a subset of the COREL database (see Wang et al. [13],
Jeong and Gray [8]), consisting of 1500 JPEG images, organized into 15 classes of
100 images each. Database images are either 256 × 384 or 384 × 256 in size. For
convenience, the images were cropped to a central 256 × 256 region and then scaled
down to 128 × 128.

3.1 Image features

We employed relatively simple features for experiments. Database images were trans-
formed from the RGB to the nonlinear CIE-LUV color space in which the Eu-
clidean distance between color vectors corresponds more closely with human per-
ception (Wyszecki and Stiles [14]). Features are extracted by sliding a window across
the image in a raster tiling fashion. Each feature vector comprises of the mean and
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Figure 2: Samples database images from each class in raster order: Africans, Ele-
phants, Caves, Beach, Roses, Postcards, Architecture, Horses, Sunsets, Buses, Moun-
tains, Tigers, Dinosaurs, Foods, Women.

the variance for each color channel within that block along with its XY-coordinates.
The mean and variance for each color channel are computed as:

µc = 1
4

∑1
i=0

∑1
j=0 p(c)

ij ,

σ2c = 1
4

∑1
i=0

∑1
j=0

(
p(c)

ij − µc

)2
,

where pij is the pixel value at row i, column j in the 2 × 2 window for color channel
c ∈ {L, U, V }. The result is an 8-dimensional feature vector:

(µL, µU , µV , σ2L, σ2U , σ2V , x, y)t,

where the first six components are the color features and the last two are the position
features.

3.2 Results

The same set of 210 query images as used previously in [8] and [2] are used in all
experiments reported here. Standard precision recall curves were used as performance
metrics. Precision and recall are shown on a single graph to display the change in
precision as the recall increases. Since the precision typically drops as the recall
increases, a retrieval system is said to be more effective if it has higher precision at
the same recall values.

To test our first method using color-position codebooks, we trained codebooks
with 8 colors and 8 positions per color. Figure 3 shows the precision recall plots of
color-position codebooks with our previous work of jointly trained codebooks with 22
codewords (for comparable complexity - see section 3.3) and MDIR based on 8 com-
ponent Gaussian mixtures (this was chosen so that results from [8] could be directly
used). Although, retrieval precision for color-position codebooks closely follows that
for jointly trained codebooks, separate training of color and position features does
not require feature weightings during the training phase. In addition, the number
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Figure 3: Comparing color-position codebooks with 8 colors and 8 positons per color,
jointly trained codebooks with 22 codewords and MDIR based on GMMs with 8
components (higher is better).

of positions for a given color may also be varied depending on the image statistics.
The performance of GMM-MDIR is expected since the model does not contain any
position information.
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Figure 4: Total precision vs. Average codebook size for region VQ
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Figure 5: Precision vs. Recall for region VQ; numbers in parenthesis are the average
codebook sizes

For region VQ experiments, we partitioned each database image into 9 regions
where the 4 corner regions were of size 43 × 43 (42 × 42 for the remaining regions).
For each region, a TSVQ codebook was trained with 32 leaf codewords and tests were
performed at various query thresholds. Figure 4, plots the total precision, defined
as the precision sum at all recall values (Pt =

∑100
r=1 Pr where Pr is the precision at

recall r), against the average region codebook size, which is computed as the average
codebook size for all 210 queries for all 9 regions. The dip in the graph, although
visually quite significant at this scale, amounts to a 5% drop in total precision. Fig-
ure 5 shows the precision recall performance of region VQ. The best performance
occurs at an average codebook size of 5.41 (corresponding to a query threshold of
1500). Also region VQ with average codebook size of 1.08, has comparable retrieval
precision (within 3%).

3.3 Complexity

A key advantage of the methods presented here is reduced complexity at compara-
ble retrieval precision. As an example, consider the number of multiplications for
an elementary step that searches for the best codeword in a codebook. A color-
position codebook with 8 colors and 8 positions per color, uses 8(6 + 2 × 8) = 176
multiplications since for each color codeword, we need 6 multiplications to compute
the color distance and 2 × 8 multiplications to find the best position for this color
codeword. The equivalent jointly trained codebook would have 176/8 = 22 code-
words. The best performing region VQ (with an average codebook size of 5.41) uses
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5.41 × 6 = 32.46 multiplications since once a feature vector is assigned to a region,
we need only compute the best matching color codeword. Recall that region VQ with
an average codebook size of 1.08 achieves nearly the same precision (within 3%); this
reduces the number of multiplications to only 1.08 × 6 = 6.48. In contrast, MDIR
with 8 components per Gaussian mixture and full covariances uses one vector-matrix
multiplication (8 × 8) and one inner product (8) for each of the 8 Gaussians for a
total of 8(8 × 8 + 8) = 576 multiplications, nearly two orders of magnitude greater
complexity.

4 Conclusion and Future Work

We have presented alternatives for incorporating position features into the VQ based
image retrieval framework. The first method with separately trained codebooks al-
leviates the problem of feature weightings during the training phase and performs
comparably with our previous jointly trained codebook method. The region VQ
method at slightly reduced retrieval precision offers a significantly lower complexity
alternative. Figure 6 summarizes this performance by showing the best points for the
two methods presented here, our previous work with jointly trained codebooks and
MDIR with GMMs. Further investigation in terms of region weighting, region size,
region shape and soft partitioning of images is of interest.
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Figure 6: Precision vs. Recall plots (higher is better) comparing region VQ with an
average of 5.41 codewords per region, color-position codebooks with 8 colors and 8
positions per color, jointly trained codebooks with 22 codewords and MDIR based on
GMM with 8 components (no position features).
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