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Abstract.
Hickey and Wittenberg (Hickey and Wittenberg, 2004) study the “Two Tanks Problem”, a

hybrid system described by Stursberg et al. (Stursberg et al., 1997). In this paper, we expand on
the use of CLIP (Hickey, 2000) (a Constraint Logic Programming over Intervals and Functions
language) to formally describe more complex systems. We add complexity in several forms. The
simplest is to have a larger system. We move from a system with two tanks to one with four tanks,
and we add non-linear valves to the pipes connecting the tanks. This example easily generalizes to
an N-tanks problem where the tanks, connected by pipes, form an arbitrarily complex graph. The
more important addition is the refinement of the model in several places. We rigorously model a
valve in which the flow varies exponentially with the valve position over much of the valve’s range,
and then discontinuously as the valve is almost closed. We introduce hysteresis in our analysis to
avoid an infinite loop of zero-time transitions, and we discuss why our techniques should not have
trouble with “Zeno” transitions.

The possibility of Zeno behaviour (Zhang et al., 2001) can arise either from physical reasons (a
value near zero, so the sign of the changes is hard to know) or for modeling reasons (the system
is near the boundary between two behaviour regimes, and while both regimes describe similar
behaviour near the boundary, the model might switch between the two regimes infinitely often in
a finite time). An elegant feature of our model is that we use the same technique of hysteresis
to prevent the Zeno behaviour from either cause. This is easily done in CLIP by changing the
conditions for a state change from one to the other to include hysteresis.

Keywords: Hybrid Systems, CLP, Intervals, Interval Arithmetic

1. Introduction

We use CLIP (a CLP language over analytic functions) to rigorously model hybrid systems. This
paper extends our earlier work by using hysteresis to preserve the rigor of the model in the face of
both non-analytic points and so called “Zeno” behaviour of a model.

There are two reasons for a point in the family of ODEs which describe a system to be non-
analytic. One is simply that the ODE is non-analytic, and the other is that the system changes
from a regime in which one ODE applies to a regime in which a different ODE applies. In a hybrid
system, an ODE change can occur either because of a state change (the digital controller changes
state) or because of what we call a “regime change” which is a point in which the system evolves
from one regime to another - perhaps because a level passes a critical point.
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A separate problem for hybrid systems is what are called “Zeno” systems. A Zeno system is one
in which the model makes an infinite number of state changes in a finite amount of simulated time.
This obviously causes the model to fail.

1.1. Hybrid Systems

A Hybrid System is a system composed of a digital part (typically a small computer) and an analog
part (typically a physical system with sensors and actuators). The field of hybrid systems is the
study of systems in which discrete events and continuous dynamic events interact. All computer
controlled or monitored processes in the real world are hybrid systems. As a field of study, “Hybrid
Systems” has come to include the study of the analog part of a system in an area where reliability
is at a premium, typically because of the cost (in lives or money) of a failure of such a system.
Some hybrid systems papers study only the analysis of the analog part of a system. Hybrid
systems research grew out of real time computation, control theory, and program verification.
Hybrid systems research strives to prove properties such as stability about complex safety critical
systems. In the chemical engineering literature, hybrid systems are sometimes called “combined
discrete/continuous processes”. An important use of hybrid systems is to prove “safety properties”,
which are statements of the form “measurement x is within range [a, b] such as “the water level in
this tank never overflows”. Because safety properties are constraints, they fit naturally in a CLP
approach. One widely studied hybrid system is the tank flow problem introduced by Kowalewski
et al. (Kowalewski et al., 1999). It is this system that we discuss here.

The history of hybrid systems starts with Fahrland’s 1970 paper (Fahrland, 1970) which asked
“Why limit the modeling to either discrete event or continuous when situations are evolving that
require more interdisciplinary solutions”. Very little was done for the next twenty years, and
Fahrland’s work is rarely cited. Fahrland may have been influenced by Roger Brockett who was
also at Case Institute of Technology, and who later did some seminal work on hybrid systems.
The first conference on the subject was the 1991 REX workshop titled Real Time: Theory in
Practice (de Bakker et al., 1991) where the term “hybrid automata” was introduced. Since that
time, real time systems and hybrid systems work has diverged, with real time work focusing more
on the computer with its latency issues, and hybrid systems focusing more on accurate modeling of
the analog part of the system. While it’s not clear how to put a real time model (explicit limits on
the time for processing) in the standard formalism for hybrid automata, the techniques introduced
in this thesis can easily model digital components as long as their latency can be bounded.

There has been considerable research on developing formal models of hybrid systems. Among
others, Davoren and Nerode developed logics (Davoren and Nerode, 2000), Maler et al. (Maler et al.,
1991), Lynch et al. (Lynch et al., 1999; Lynch et al., 2001), Henzinger et al. (Henzinger, 1996), and
Alur et al. (Alur et al., 1995) developed formal models. From our point of view, a limitation of
these models is the difficulty in applying them to real systems, and the amount of overhead that
must be relied on to trust the results.

1.2. Earlier Interval and CLP Approaches to Hybrid Systems

We are not the first to apply interval arithmetic techniques to the problem of rigorously modeling
hybrid systems. HyperTech (Henzinger et al., 2000) took a major step towards reliability of their
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results by using interval arithmetic ODE solving as a tool to add rigor to the very successful HyTech
system. Our system merges, for the first time, the rigor of the formal model approaches and the
practicality of the more engineering-based approaches by employing validated ODE solving. Our
approach has several advantages over earlier interval models:

− CLIP is declarative, so that it describes the system being modeled directly.

− CLIP is logic based, so it can be viewed directly as a theorem prover using CLP logic.

− CLIP is constraint based. It doesn’t require one to fully specify a system. CLIP allows one to
understand some properties of a system based on initial assumptions.

Others have used constraint logic programming to model and analyze hybrid systems. Gupta et
al. (Gupta et al., 1995)(Gupta et al., 1996) introduced a ground breaking approach called “hybrid
cc” which allowed one to formally describe hybrid systems using a logic programming language with
constraints. Urbina (Urbina, 1996) has pioneered another approach using CLP(R)(Jaffar et al.,
1992) to model and analyze hybrid systems. Delzanno and Podelski (Delzanno and Podelski, 1999;
Delzanno and Podelski, 2001) have explored analyzing hybrid systems using CLP(Q,R) (Holzbaur,
1995), a system which handles linear constraints with real and/or rational coefficients, as well as
Boolean constraints. Their approach is to define a translator from Shankar’s guarded command
language (Shankar, 1993) to CLP(Q,R).

2. CLIP

CLP(I) is an interval-based constraint logic programming (CLP) language whose domain is the
set of real numbers. The class of CLP languages (and their syntax and semantics) was introduced
by Jaffar and Lassez in 1987 (Jaffar and Lassez, 1987). Jaffar and Maher provide an excellent
survey (Jaffar and Maher, 1994) of the fundamental concepts of CLP. The idea of calculating over
intervals of reals comes from Moore’s 1966 book on Interval Arithmetic (Moore, 1966). The idea of
combining CLP and Interval Arithmetic was first conceived by Cleary (Cleary, 1987) but the first
production quality CLP(I) interpreter was the BNR Prolog system developed by Older, Vellino, and
Benhamou (Research, 1988), (Benhamou and Older, 1997),(Older and Vellino, 1993). BNR Prolog
was designed to be verifiably correct in the sense that the intervals it returned were mathematically
guaranteed to contain all solutions to the underlying arithmetic constraints. The system however
was proprietary and the underlying algorithms were never published in the scientific literature.

CLIP was originally developed as an open source implementation of CLP(I) by Qun Ju and Tim
Hickey (Hickey and Ju, ) (Hickey and Ju., 1997) CLIP has subsequently been extended by Tim
Hickey, who added the CLP(F) language, which provides constraints over functions. CLIP is built on
top of Prolog (Prolog 95, 1995), (Deransart et al., 1996), and currently runs on GNU Prolog (Diaz,
2002) and ALS Prolog. The fundamental philosophy is to have a relatively small base of sound
primitive constraint contractors which are simple enough so that one can argue convincingly, if not
formally prove, that they are correct, and then build more complex solvers on top of the proven
system. Since the complex solvers built on CLIP primitives are made up of sound simple solvers,
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they are also sound. An important feature of CLP languages is that they are theorem provers, so
that each answer generated by a CLP program has a direct interpretation as a theorem about the
underlying domain.

CLIP can be considered to be a constraint engine over intervals and functions which interfaces
to the Prolog engine (a constraint solver over general finite domains). The CLP(F) language solves
analytic constraints by soundly approximating sufficiently differentiable functions by power series
with remainder terms and introducing arithmetic constraints among the Taylor coefficients of the
functions at the endpoints, at points in the interval, and over the entire range.

3. Generalized Tank Flow Problem

In a hybrid system, the interface between the analog and the digital part involves imperfect hardware
whose description must include error bars. The models of system behaviour are often particularly
imprecise near boundaries. We use intervals to handle the issue of imprecision in measurements,
and use intervals in a novel way to rigorously model the behaviour of systems near boundary points.
We start by adding valves to the model. We note that the model in Kowalewski et al. has the
behaviour of the valve discontinuous at 0 (by 5% of full flow), and show how a broad constraint
describes that.

In (Wittenberg, 2004) we showed how CLIP could model the simple two tanks problem. In
this paper, we show how the CLIP model can easily be extended to the “tank flow problem”, an
extension of the two tanks system to an arbitrary number of tanks, and to model it more rigorously
than other methods can. Here, we consider a four tank version with valves between each pair of
tanks and at the output.

3.1. Mathematics of the Tank Flow Problem

The problem we study is diagrammed in Fig. 1 and the parameters and variables are shown in
Table I. The problem can be described as follows: There are n tanks, numbered from 1 to n, with
the bottom of each tank lower than the bottom of the previous tank. The depth of the water in
tank j at time t is given by Dj(t) The depths Dj are measured from the bottom of their respective
tanks. The altitude of the bottom of tank j is Hj above an arbitrary horizontal datum, perhaps
sea level. Each tank j has a horizontal pipe leaving from the bottom of the tank. The flow through
that pipe is Ij , and there is a valve Vj on the pipe. There is a constant inflow of water into tank 1
(the uppermost tank) where the flow rate is given by a constant f00.

The general equation for flow through a pipe is that the rate of flow is proportional to pipe
coefficient times the square root of the height difference of the water levels at each end. Specifically,
the flow Ij(t) through pipe j connecting tank j to tank j + 1 is governed by a pair of ODEs in the
resistance Rj(t) to flow.

Rj(t) is a function of the pipe coefficient Cj , valve coefficient Ej , and the valve position Pj(t))
and to the square root of the pressure difference. The pipe coefficient Cj describes how easily water
flows through the pipe when the valve is in the fully open position. The valve coefficient Ej is the
exponent describing how much the valve cuts off the flow as a function of the valve position. The
pressure difference is proportional to the difference in water heights on each end of the pipe.
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Figure 1. Diagram of Tank Flow system for n = 4

Table I. Parameters and Variables

Hj Height of tank j above sea level

Vj inverse of time for valve j to open or close (valve speed)

Cj pipe coefficient of pipe j when the valve is fully open

Ej exponent for describing the valve’s behaviour

Pj(t) position of valve j. 0 is fully closed, 1 is fully open

Mj(t) valve motion – closing, opening, halted

Rj(t) program variable for valve regime - shut, transition, normal

Dj(t) Depth of water in tank j at time t (measured from bottom of tank.)

Ij(t) rate of flow through pipe j at time t

If the water level in the lower tank is below the pipe bringing water in, there is no back pressure
in the pipe, so we can ignore the water level in the lower tank. If the water level in the lower tank is
higher than the input pipe, we have to include the effect of back pressure on the flow through the
pipe. Therefore, we have a pair of ODEs for each pipe. One ODE of the pair holds when the water
in the lower tank (j +1) is below the level of the connecting pipe (Dj+1(t) < Hj −Hj+1), the other
member of the pair holds when the water level is above the connecting pipe (Dj+1(t) > Hj−Hj+1).
When the water level is equal to the height of the connecting pipe, the ODEs are the same, so we
choose one arbitrarily. Later (Section 5.2) we will show how to rigorously handle this point where
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the ODEs change, and which is therefore not analytic. Note that even if the water level is above
both ends of a pipe, if the water levels (measured from sea level) are equal, the ODE is non-analytic
because the square root1 function’s derivative is infinite at 0.

In our simulation, later tanks do not have higher water level than earlier tanks, so we do not
consider “backwards” flow, though it is a simple extension.

We handle these two different reasons for an ODE to be non-analytic in exactly the same manner,
described in Section 5.

The valve decreases the flow by a fraction which decreases exponentially with the valve position.
Recall that since Dj is the depth in a tank, Ij−1 the flow into that tank, and Ij the flow out,
D′

j = Ij−1− Ij Define HDiffj to be the the difference in altitude between the bottom of tank j and
the bottom of tank j + 1 That is: HDiffj = Hj −Hj+1 The ODEs for flows in pipe j are:

Ij(t) =


0 Pj(t) = 0
eEj ·(1−Pj(t))

3 · Cj

√
Dj(t)−Dj+1(t) + HDiffj Dj+1(t) > HDiffj

eEj ·(1−Pj(t))
3 · Cj

√
Dj(t) Dj+1(t) ≤ HDiffj

Where Pj is the position of the valve; Cj is the pipe coefficient; the value under the radical is the
effective difference in height between the water levels of the two tanks, and the exponential term
is the fraction by which the valve decreases the flow.

4. Handling State Changes

A hybrid system of any size will have different ODEs to describe it at different times. Writing each
ODE explicitly (as we did for a simpler example in (Hickey and Wittenberg, 2004)) is impractical
because of a combinatorial explosion in the number of ODEs. To avoid this problem, we parameterize
the ODEs describing the system, so a state change is modeled by a change in some of the parameters
to an ODE rather than by making a different ODE active.

The ODEs governing a hybrid system can change for either of two reasons. The first is if the
digital part of the system has a state change which affects the ODEs. We call this a program control
change. The other is if the continuous system evolves in such a way as to change the ODEs, such
as evolving to a point where a tank overflows, or the water level in a tank rises above the input
pipe to that tank, causing back pressure. We call these events regime changes. One case of regime
change is when a valve that had been opening (or closing) becomes fully open (or closed). That
affects the ODEs, by changing the rate at which the valve position changes, not by changing the
water flow directly. A helpful feature of CLP(F) is that we can model changes in ODEs caused by
program control and those caused by regime changes in exactly the same way.

1 We really want a function which is the positive square root of a positive number, and the negative square root
of the absolute value of a negative number to properly describe the fluid flow. This function is also not analytic at 0.
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Figure 2 is a state diagram for each valve except the last in the tank flow problem. (The last
valve has no lower tank, so the level in the lower tank can’t rise above the height of the pipe.) The
states are described by two ternary variables, M (valve motion regime) describes the motion of the
valve as one of (opening, closing, halted), while R (valve position regime) is one of (shut,
trans, normal). When R takes the value shut it means that the valve is closed, normal means
that the valve is open, and not too near the closed position. When R takes value trans the valve
is in a transitional region and is nearly, but not quite closed. The transitional region is used to
model the regime where the ODEs are not well understood, so we use a simple over-approximation
constraint in that regime.

Figure 2. State diagram for ODEs

5. Unavoidable Sources of Error

An important issue in modeling hybrid systems is to realize that almost none of the parameters are
known exactly. This is true both of the parameters to the differential equations which describe the
system – These parameters are often determined by curve fitting to a set of measured points or are
calculated from physical models which include simplifying abstractions, and of measurements taken
by sensors in the system – These are measured with some accuracy, which is often specified as an
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error-bar.2 Because CLP(F) treats everything as an interval, it models these error bars naturally.
If a CLP(F) program shows that a system has a safety property (proves that it avoids a region),
that proof is valid even when each parameter takes the worst possible value within the given error
bars. To deal with this issue by sensitivity analysis (sensitivity analysis conference, 2004; Arsham,
; Taylor, 1997) on the inputs would be extremely difficult.

One of the problems in rigorous modeling is that often there are areas where one’s original
model breaks down for some reason. This can occur at an area where the physics are unclear, a
point where the defining functions are not analytic, or perhaps a function which is poorly defined
at a limit point. The point of this paper is that CLIP makes it simple to use hysteresis to deal with
all of these problems.

5.1. Dealing with Poorly Defined Regions

Ideally a modeling system allows stepwise refinement of the model. We demonstrate this in CLP(F)
by adding valves to our model of the tank flow system. Adding the valves to the model was easy
despite using a rather complex model of the valve’s behaviour.

One problem which is rarely addressed in modeling hybrid systems is modeling the area around
where a component or valve changes state. Using constraints, we can provide a rigorous answer
by describing the output of the component while it changes state as being between the output it
has in one state and the output it has in the other, and keeping that constraint for however long
the component takes to change state. If more precision is required, one can add a description of
the component’s behaviour during the state transition. Since the description consists of upper and
lower bounds for the component’s output, one can progressively refine the bounds as one learns
more about the component’s behaviour.

In many systems, the physics in some regions is not well-understood. Most hybrid system
techniques ignore this and simply assume that the ODEs which work in most areas work near
boundaries as well. For example, in the tank flow problem when a tank is almost empty, the flow
from it may be irregular and come in discrete drops rather than as a continuous flow. At these
points, we don’t claim to understand the details of the flow, but we can model them rigorously by
writing constraints which clearly include any possible behaviour of the flow. We don’t consider an
empty tank in this case, except to constrain our description of the system to cases in which the
water level in each tank is at least E, where E is a negligibly small positive value.

A further problem is that even away from boundary conditions, the physics of the system may
not be understood perfectly. In most cases, one measures a value (here, the flow through a valve as
a function of how open the valve is) at several points, uses physical theory to decide what form the
curve should be (in this case, an exponential of the valve position), and then uses a least-squares fit
to find a curve which best describes the measurements. There is, of course, error in the measurement
of each point, so the coefficients for the exponential curve have some (hard to calculate) error bars.
In addition, the behaviour when the valve is almost closed does not follow the exponential decay
curve, and is extremely difficult to measure precisely.

2 Note that the problem of imperfect measurement is inherent in the physical world. Heisenberg’s uncertainty
principle prohibits perfect measurement, and Burridan’s principle (Lamport, 1986) further limits the speed at which
one can usefully take measurements.
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For example Kowalewski et al. (Kowalewski et al., 1999) describe a valve by a function Ki(P )
giving the pipe coefficient and valve coefficient of the valve as an observed function of how open
the valve is. For the first valve, the function they give (converted to our notation) is:

K1(P1) =

{
1.85 · 10−4 · e−3.1·1−P 3

1 m5/2

s if 0 < P1 ≤ 1
0m5/2

s if P1 = 0

and for the second valve, they give:

K2(P2) =

{
2.26 · 10−4 · e−5.7·1−P 3

2 m5/2

s if 0 < P2 ≤ 80
0m5/2

s if P2 = 0

In neither case do they give error bars. The valve position is described by a real number in [0, 1]
with 0 corresponding to fully closed and 1 to fully open. Figure 3 shows a graph of R vs. P for
valve 1. The curve is an exponential decay, whose value when the valve is almost closed is about
5% of the flow when the valve is wide open, but they define the flow for a fully closed valve as 0.
By straightforward calculation, we find that R1(1) ≈ 1.85 · 10−4, while R1(ε) ≈ 8.570 · 10−6 (this
is about 5% of full flow), and R1(0) is defined to be zero. It is likely that this is not fully correct,
as a discontinuity of that magnitude is not common. We model this discontinuous point by having
three constraints for three different regimes. When the valve is fully closed, R is 0. When the valve
position is above the transition region, R is given by the ODE above. The interesting case is when
the valve position is in the transition region. We model this case with a constraint which says that
if the valve position P is near 0 (here we specify < 0.02), R is small. To choose the upper end of
R’s range, we choose a value slightly above the calculated value of R at any point in P ’s range for
that region. The choice of where the transition region ends is somewhat arbitrary.

Figure 4 shows how we rigorously model this system for P near 0. For the part of the curve
where the equations are reliable, we enclose the specified curve on each side by the ODE describing
the valve. Because the parameters of the ODE are intervals, the value of the function at any point
is an interval. In the area where the curve is discontinuous, we use a constraint which includes all
possible values the function could take. This introduces some uncertainty into the formal model, but
that uncertainty was already present in the description of the physical system. Using constraints
makes that uncertainty explicit, and models it rigorously.

5.2. Dealing with Regime Change Points

One of the advantages of using CLP(F) is that one can often use one technique to handle multiple
issues. In section 5.1 we use separate ODEs, often with rather simple-minded constraints, to deal
with regions where the physics is unclear. Here we use a similar system to deal with non-analytic
(or even discontinuous) points in an ODE.

When the water level in the lower tank is above the input pipe (in regime above), one set of
ODEs holds, when the level is below the input pipe (in regime below), another set of ODEs holds.
We model this by having a regime change at that point. An obvious problem arises: Our model
would allow an infinite number of transitions (each taking zero time) between the two states, and
therefore never get to calculating the change in water level which would move clearly into one state
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Figure 3. Relative flow as a function of valve position for valve 1 – function from Kowalewski et al.

Figure 4. Graph of flow against valve position for valve 1 showing enclosure by simple constraint (scale greatly
enlarged)
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(Actually, since CLPs are non-deterministic, there would be an infinite path and also a one-step
path out of that condition). We handle this by creating a special artificial state near for water levels
near the boundary. We then artificially put in hysteresis, so that on leaving that middle state, one
cannot immediately re-enter it. This problem is related to the problem of Zeno automata, discussed
in Section 7.

This example clarifies two issues, as there are two separate reasons for using near state between
above and below. The first reason is that as the water in the lower tank reaches the level of the
pipe the physics get a little unclear - what happens when the water covers half the pipe? This issue
is clearer in the case where the ODEs are discontinuous, as in section 5.1. The second issue is that
in order to model a change of ODEs, we need two regimes, with appropriate transitions between
them. This issue arises even when the physics are clear, such as when one has a pipe between two
tanks and the relative water levels in the two tanks is changing. At the point where the water levels
are equal, the ODE is non-analytic (because the square root function is non-analytic at 0), so we
would have to have a change of regimes. If the rule for a regime change was simply that the water
levels were equal, when the levels became equal there would be a legal infinite path of zero-time
changes from one regime to the other. One could look at the derivative to know which direction
the regime change goes in, but if the water level is almost constant, the derivative will be near
zero, and the same issue is still there. To avoid this case, we artificially add hysteresis to an already
artificial regime change.

6. Overview of Code for Tank Flow

The complete program for the n=4 case of the tank-flow problem is in the Appendix of(Wittenberg,
2004). Here we discuss some of the more interesting snippets from the code.

6.1. Evolve and Iterate

We model a hybrid system in CLP(F) by modeling a series of steps. A step begins either at a
specified initial state, or when the previous step ends, and ends when either the length of the
step (amount of time simulated) reaches a maximum step size delta, or a change of ODEs occurs
(whether caused by program control or a regime change). The following part of the program is the
main code, which runs the system through one step, increments the state counter, and continues.

evolve(S0,C,N,S2) :-
evolve0(S0,C,N,S1),
enforce_ODEs(S1,C,S2),
copy_discrete_state(S1,S2).

evolve(S0,C,N,S2) is true if and only if the system described by C can evolve to a boundary state
S1 in N steps and then evolve from state S1 to state S2.

evolve0(S0,_C,N,S1) :- {N=0},eqstate(S0,S1).
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evolve0(S0,C,N,S2) :-
opt_next_step(S0,C,S1),
print(ons(S0,C,S1)),nl,nl,
{N=M+1},
evolve0(S1,C,M,S2).

A direct reading of the program is as follows: In zero steps, the system does not change state.
The evolve0 predicate says that a system can evolve from S0 to S2 if S1 is the next step from S0,
N = M + 1, and the system can evolve from S1 to S2 in M steps. The variable C in all cases is the
set of constants which describe the system parameters.

% next_step(InitialState, ProblemConstants, FinalState)
next_step(S0,C,S1) :-

enforce_ODEs(S0,C,S1),
find_state_change(S0,C,S1).

The call to next step states that the ODEs are followed (enforce ODEs), and finally that
system has run to an appropriate point (find state change). All the variables in the states (S0,
S1) and the constants term (C) are variables over the reals. Variables over functions are used in
enforce ODEs to specify constraints over the real variables in S0, C, S1.

6.2. Finding State or Regime Changes

In each case, the step ends when any of the requirements becomes true. Figure 5, shows how
find state change is defined to be true when any one of the following happen:

− One of the find flow state change predicates becomes true because the water level in one
of the tanks goes from above the input pipe in state S0 to below in state S1, or vice versa (one
of the tanks changes regime)

− one of the find valve state change predicates becomes true, because the valve position is
such that a change in regime occurs at state S1

− one of the find program state change predicates becomes true because the program (ie. the
digital part of the hybrid system) changes state at state S1

− find step change is true because state S1 is Delta time after state S0 and no other state
changes have occurred.

The CLP(F) code to check for this (excerpted in Figure 5 looks rather repetitive. This is true
only because in this example we use the same behaviour for each valve and for each tank. In a
less symmetric case, this code would not grow, but there might have to be multiple versions of
find ?? state change to describe the different behaviours.
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find_state_change(S0,C,S1) :-
% TANK FLOW REGIME CHANGE

find_flow_state_change(r1,h1,h2,d2,C,S0,S1);
find_flow_state_change(r2,h2,h3,d3,C,S0,S1);
find_flow_state_change(r3,h3,h4,d4,C,S0,S1);

% VALVE REGIME CHANGE
find_valve_state_change(p1,vr1,vm1,C,S0,S1);
find_valve_state_change(p2,vr2,vm2,C,S0,S1);
find_valve_state_change(p3,vr3,vm3,C,S0,S1);
find_valve_state_change(p4,vr4,vm4,C,S0,S1);

% PROGRAMMED STATE CHANGES
find_program_state_change(v1,d2,C,S0,S1);
find_program_state_change(v2,d3,C,S0,S1);
find_program_state_change(v3,d4,C,S0,S1);

% no regime or state changes before the time limit is reached
find_step_size_change(S0,C,S1).

Figure 5. Code to Find State Changes

6.3. Enforcing ODEs

One section describes all of the analog parts of the system. It consists of three large assertions.
The first (and largest) section is purely bookkeeping. All of the ODEs are in the last two parts of
enforce ODEs. In order to make the lists of parameters smaller, we use lists to keep all variables
of each type together. lookup, evalall, and decls are helper functions to deal with the lists.

The bookkeeping section states that the individual variables correspond to what the lists say
they are, and constrains the domain and range of the functions. It uses lookup to bind the values
of constants (from C), and conditions at the start of the step (from S0), and the end of the step
(from S1) to variables. Then it uses decls to declare several function variables (and their domains)
at once, and finally specifies which ODEs each tank should obey while in the state specified by S0.
Figure 6 shows sections of the first part of enforce ODEs. Much of that section is repetitive, so
only representative fragments are reproduced here. We interpret the code as follows: enforce ODEs
is true if and only if all of the following elements are true (including, of course, those that are elided
here.)

− P is a vector containing P1,P2,P3,P4

− each element of P is a function defined on [T0,T1max]

− each element of P is a function whose range is [0, 1]
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− Ps0 is a vector containing P10,P20,P30,P40

− Ps1 is a vector containing P11,P21,P31,P41

− the values of Ps0 are as specified in C in state S0

− the values of Ps1 are as specified in C in state S1

− evalall applied to each element in the list P evaluated at T0 gives the corresponding value
from Ps0, and when evaluated at T1 gives the corresponding value from Ps1

− the value of v in the list of constants C is V

− each of the valves obeys valve ODE given the valve position, velocity, and motion regime

− each of the tanks obeys the appropriate tank ODE

Another section handles the flow restriction caused by the valves.

valve_coef(normal,FRAC,P,E) :- {[FRAC=exp(E*((1-P))**3),
FRAC in [0,1], P in [0.01,1] ]}.

valve_coef(trans,FRAC,P,_) :- {[ FRAC in [0,0.06], P in [0,0.01] ]}.
valve_coef(shut,FRAC,P,_) :- {[FRAC=0.0*FRAC, P=0*P ]}.

valve_ODE(P,_,halted) :- {[ ddt(P,1) = 0.0*P, P in [0,1] ]}.
valve_ODE(P,V,opening) :- {[ ddt(P,1) = V+0*P, P in [0,1] ]}.
valve_ODE(P,V,closing) :- {[ ddt(P,1) = NV + 0*P, P in [0,1],

NV= - V ]}.

The ODE code is completely straightforward, as ODEs can be described directly in CLP(F).
FRAC, E, and P are all functions of T. The first line says that in the valve regime normal,

FRAC = eE·(1−P )3 , FRAC ∈ [0, 1], P ∈ [0.01, 1]

The second line says that in valve regime trans FRAC ∈ [0, 0.06] and P ∈ [0, 0.01]. The third line
says that flow through a shut valve is 0. The idiom FRAC=0.0*FRAC is a workaround used instead of
FRAC=O because CLIP does not allow functions to be set equal to a constant. The second line of the
code is needed to implement the technique of rigorously modeling discontinuous functions discussed
in section 5.1. Observe that this procedure constrains P to take values inside the appropriate region
(for normal, trans, shut).

Similarly, the last three lines specify the derivative of P (the valve position) to be 0 when halted,
V for opening, and -V for closing.

The last assertions in the ODE section specify the flow into and out of tanks. There are seven
cases,as the first and last tanks have different configurations than tanks in the middle, and for all
but the last tank, the ODEs differ according to which regime the tanks is (among below, near,
and above) corresponding to whether the water level in the lower tank is above or below the pipe
entering the lower tank. We consider the case of a middle tank in regime above, as that is the most
complex.
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enforce_ODEs(S0,C,S1) :-

...

% VALVE Position ODEs
% create valve position functions on [T0,T1max]

P=[P1,P2,P3,P4],
decls(P,function(T0,T1max)),

% put bounds on the range of the function
bound_functions(P,[0,1]),

% set their values at times T0 and T1
Ps0=[P10,P20,P30,P40],
Ps1=[P11,P21,P31,P41],
lookup([p1=P10,p2=P20,p3=P30,p4=P40],S0),
lookup([p1=P11,p2=P21,p3=P31,p4=P41],S1),
evalall(P,T0,Ps0), evalall(P,T1,Ps1),

% lookup the valve speed
lookup([v=V],C),

% add the ODE constraints
valve_ODE(P1,V,M1),
valve_ODE(P2,V,M2),
valve_ODE(P3,V,M3),
valve_ODE(P4,V,M4),

...

% apply the ODEs corresponding to each tank
% Ri = ode governing tank i, Di = depth in tank i,
% Fi = flow out of tank i, Hi = height of tank i,
% Pi = valve opening out of tank i, Ki = valve coefficient,
% F00 = flow into tank 1

first_tank( R1, D1,F1,D2, F00,H1,C1,FRAC1,H2,E),
middle_tank(R2, F1,D2,F2,D3, H2,C2,FRAC2,H3,E),
middle_tank(R3, F2,D3,F3,D4, H3,C3,FRAC3,H4,E),
last_tank( F3,D4,F4, C4,FRAC4).

Figure 6. Parts of Enforce ODEs code
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middle_tank(above,F1,D2,F2,D3,H2,C2,FRAC2,H3,_E) :-
{[F2=C2*FRAC2*psqrt(D2-D3+H), ddt(D2,1)=F1-F2, H=H2-H3,

D3 in [H,1000] ]}.

This says that given a middle tank 2 (middle tank here means that tank 2 is not the first tank, and
tank 3 is not the last tank) in regime above with the following parameters:

F1 flow into the upper tank
D2 water height of the upper tank
F2 flow out of the upper tank (into the lower tank)
D3 water height of the lower tank
H2 height of the upper tank above sea level
C2 parameter of flow through the pipe between upper and lower tanks
FRAC2 fraction of the maximum flow the valve allows
H3 height of the lower tank above sea level
E an error term (the underscore before the E means ignore this term .)

then:

F2 = C2 · FRAC2
√

D2−D3 + H,
dD2
dT

= F2− F1, H = H2−H3, D3 ∈ [H, 1000]

Here H2, C2, H3 and E are constants, and all the other variables are function variables, though
that must be implied from earlier declarations. Again note that the the constraint requires the
depth D3(T) to be in the region for the above case or on the boundary with another case. Note
how the ODEs translate directly into CLIP.

6.4. Finding State Changes

The last section of code we describe in detail determines that a regime change has occurred. Parts of
this code are in Figure 7 and Figure 8. This code is called from find state change which says that
find state change is true if at least one of find flow state change, find valve state change,
find program state change or find step change, is true.

find flow state change (Figure 7) is true if and only if the two lookup assertions are true,
update discrete state is satisfied, and flow state change is satisfied. The lookup assertions
state that the values of constants passed to the assertion match the constants stored in C. update discrete state
here states that the only difference in discrete variables between state S0 and state S1 is that in
state S0, Ri has value R before and in state S1, Ri has value R after.

flow state change lists the four possible transitions, and the water levels which allow them.
Note the hysteresis – to enter state near the water level has to be within E of the critical level (H1
- H2), while to leave state near the water level has to be 2*E away from the critical level. This is
to prevent an infinite sequence of zero-time transitions when the water level is at a critical point.

Figure 8 shows the code for changes in the valve’s regime. find valve state change is very
similar to the code for find flow state change, except that it twice calls update discrete state
to update the two ternary variables for the two sets of regimes a valve has. One (M) is the valve
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% Detection of regime change due to tank depth exceeding input
% pipe height e.g. find_flow_state_change(r2,h2,h3,d3,C,S0,S1).
% note j=i+1 here and Ri in {above,near,below}

find_flow_state_change(Ri,Hi,Hj,Dj,C,S0,S1) :-
lookup([Hi=H1,Hj=H2],C), lookup([Dj=D],S1),
update_discrete_state(Ri,R_before,R_after,S0,S1),
flow_state_change(R_before,D,R_after,H1,H2).

% We use hysteresis in our analysis to avoid an infinite loop of zero
% time state changes as it goes from near to below and back again.
flow_state_change(below,D,near,H1,H2) :-

E=0.00001, {D = H1-H2-E}.
flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2-2*E}.
flow_state_change(above,D,near,H1,H2) :-

E=0.00001, {D = H1-H2+E}.
flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2+2*E}.

Figure 7. Code for Regime Change as Water Level Changes

motion regime, which can be one of opening, halted, closing, the other (R) is the valve position
regime, which can be one of shut, trans, norm. The valve position regime is necessary because
of the discontinuity in the valve ODEs at zero. norm means that the valve is in the regime where
the standard ODE applies, shut means that the valve is fully closed, and there is no flow through
it, and trans is the transition regime, where we simply apply a coarse constraint because we don’t
understand the physics in that regime.

7. Zeno hybrid systems

Johansson et al. (Johansson et al., 1999) introduce what they call a “Zeno phenomenon”. This is a
problem with some hybrid models in which an infinite number of steps occur in a finite amount of
time. At best, this leads to calculations which never finish, while at worst, it leads to false proofs
of safety properties in systems which don’t have those properties. The canonical examples of Zeno
phenomena are a bouncing ball which with each bounce achieves some fraction of the height of
the previous bounce in a fixed fraction of the time, and a water tank example discussed below. In
the bouncing ball case, a simulation would have to calculate an infinite number of bounces before
terminating unless the model included some handling of the idea that when the height of each
bounce is less than one atom’s diameter, the model must change.

The water tanks example of Johansson et al. is shown in Figure 9. There is a flow of water i into
a valve which can direct the water into either of two tanks. Each tank has a water level (h1, h2),
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% check to see if valve n has hit a state change
% and if so, update the discrete part of S1 accordingly
% e.g. find_valve_state_change(p2,v2,C,S0,S1).
% v2 in {opening,closing,halted}, p2 in [0,1],
% note that this is a regime change, not a state change.
% Also, we have to handle the regime change from shut to transition
% to normal. The transisition to shut implies a transition to halted,
% but not vice versa.

find_valve_state_change(Pn,Rn,Mn,_C,S0,S1) :-
% use S2, as temp states to have 2 discreet vars change

lookup([Pn=P_before],S0),lookup([Pn=P_after],S1),
update_discrete_state(Mn,M_before,M_after,S0,S2),
update_discrete_state(Rn,R_before,R_after,S2,S1),
valve_state_change(M_before,R_before,P_before,M_after,

R_after,P_after).

% regime change rules for valve motion (and in closing case, position)
valve_state_change(opening,normal,_P_before,halted,normal,P_after) :-

{P_after=1}.
valve_state_change(closing,trans,_P_before,halted,shut,P_after) :-

{P_after=0}.

% regime change rules for valves position
valve_state_change(opening,trans,_P_before, opening,normal,P_after) :-

{P_after=0.01}.
valve_state_change(opening,normal,_P_before,constant,normal,P_after):-

{P_after=1.0}.
valve_state_change(opening, shut,_P_before, opening,trans,P_after) :-

{P_after=0.0}.
valve_state_change(closing, normal,_P_before,closing,trans,P_after) :-

{P_after=0.01}.
valve_state_change(closing,trans,_P_before, constant,shut,P_after) :-

{P_after=0.0}.

Figure 8. Code for Valve Regime Changes
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and a required level (r1, r2). The safety property is that h1 is always above r1, and h2 is always
above r2. The water flow out of each tank is proportional to the ratio of the area of the tank to the
area of the output pipe, and to the square root of the water height. If the input flow i is chosen
to be larger than either output flow o1 or o2, but less than their sum (when h1 and h2 are near
r1 and r2), it is clear that the level in at least one of the tanks must fall below its required level.
Consider the program which whenever one of tanks gets to its required level switches the flow to
that tank. As the water level gets lower, the switching will happen more and more often, and the
valve will switch an infinite number of times in a finite period, during which time the water level
in each tank will still be at or above the required level.

Johansson et al. note that the Zeno phenomenon usually occurs as a result of over abstraction in
the model, as happens in these cases. Real systems can have valves that chatter, but the chattering
cannot involve an infinite number of state changes in a finite time. If the real system has chatter,
one should model it by a constraint giving a minimum time for a valve to change state. The infinite
chattering is an artifact of some models, and should be removed by the modeler. Zhang et al. (Zhang
et al., 2001) give examples of cases where overly abstract models (with the Zeno property) of real
systems (without the Zeno property) lead to incorrect proofs of safety properties. In most cases,
the Zeno problem can be eliminated by a more accurate model, often by simply modeling the time
a valve or switch takes to change state. In our example, we avoid Zeno phenomena because there
is a lower bound on the time required for twelve consecutive state changes. This bound is implied
in different ways for different sets of state changes. For example, the water flow through any pipe
is proportional to the square root of the water height, and we bound the water height in each
tank. That limit on the water flow limits how quickly the water level in any tank can change. The
only code added to avoid Zeno phenomena is the hysteresis. One case in which we do not avoid
Zeno phenomena is if the discrete part of a hybrid automata describes a Zeno phenomena. If, for
example, the program specified that at some water level a valve would switch from open to closed
and from closed to open, that behaviour would be modeled, and the simulation might never finish.
There is nothing to be done here. If a user specifies a poorly-formed program, analysis may fail.

7.1. CLP(F) and Zeno systems

How does a CLP(F) model handle a Zeno system? Consider the bouncing ball first. If the modeler
does not note that the physics change for very small bounces, the simulation has to include an
infinite number of vanishingly small bounces, but because everything in CLP(F) is an interval, the
height of the bounce will at some point reduce to [0, S], where S is the smallest number representable
in the floating point system. CLP(F)’s non-determinism means that it should eventually explore the
path where the bounce height is 0, and the motion ends. Because CLP(F) currently uses depth-first
search, it is non-deterministic whether it will try the finite or the infinite path at each branch.
If CLP(F) were to use breadth-first search, it would clearly show the possibility that the motion
ended, while still modeling the Zeno execution as another possibility. This is probably the best one
can hope for. If one gives a computer a model which includes a Zeno execution, the model must
show that. If the model can also show that the behaviour is within measurement (or calculation)
error, one hopes the user will realize that the initial model is insufficiently defined.
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Figure 9. Flow system with Zeno behaviour (after Zhang et al. )
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