
Enhancing CS Programming Lab Courses

using Collaborative Editors

Timothy J. Hickey
J. T. Langton

Kenroy Granville
Richard Alterman

Brandeis University

March 30, 2004

Abstract

This paper describes the pedagogical implications of the GREWPtool
(the Groupware Research in Education and the Workforce Project), a
same time different place groupware tool built to support synchronous,
collaborative coding among small to medium sized groups. GREWPtool
exploits the educational benefits of paired programming while extending
the model to allow students synchronous control of the same code. This
effectively drops the constraints of turn taking, and allows for a richer
interaction. The result was a powerful tool that can be used to provide
interactive lectures, structure classroom activity, and facilitate paired pro-
gramming during labs. In this paper we present the design and use of
GREWPtool with an emphasis on how it enhances the classroom expe-
rience. In particular, we give a qualitative analysis of how this tool has
been used in six lab courses over the past two years.

1 Introduction

There has been a great deal of research on collaborative technologies for the
computer science classroom [27, 20, 7]. Curiously, most of these efforts have ne-
glected to directly support the core element of any computer science curriculum:
programming. Collaborative coding (or “pair programming”) has been known
and used in industry, and recently shown to be quite effective in academia
[26][16][13] [14][1]. We wanted to extend the traditional model of this tech-
nique with software that would allow students simultaneous editing of the same
code. In doing so we aimed to increase learning through a richer constructivist
interaction.

GREWPtool was designed as an Integrated Development Environment (IDE)
to support this new model of cooperative coding [11]. Riordan [21] has under-
taken a similar effort in building an ILLE, Integrated Learning Laboratory En-

1

vironment, for novice programmers learning Java. Their software provides some
learner scaffolding and allows instructors to interact with students through chat
while they code, but only the student is doing any coding. This is analogous to a
predecessor of GREWPtool called TATool [6] which, in addition to chat, enables
instructors to reference and type next to specific lines of student code. Though
useful, neither of these tools support the simultaneous editing of a single code
document between pairs of students. Enabling this kind of student interaction
is both a technical and a user interface design problem.

GREWPtool was an expansion on work addressing the implementation of
shared editors [23], and their design in an educational context [17] [15]. It
has not only supplemented the normal curriculum, but introduced benefitial
dynamics and effective teaching techniques. In this paper we describe the de-
sign, implementation, and advantages of using GREWPtool in the following six
computer science laboratory courses and independent study courses:

• TYPCosi/Aut02/Spr03 – 10, bright, inner-city, transitional students learn-
ing HTML/CSS, Scheme Servlets, Scheme Applets and TYPCosi/Spr04 –
20, bright, inner-city, transitional students learning HTML/CSS, Scheme
Servlets, Scheme Applets

• CS210a/Spr03 – 4-5 local and 2-3 remote Masters/PhD CS students de-
veloping 3d graphics libraries in Scheme

• CS2a/Sum03 – 4 non-CS majors learning HTML/CSS, Servlets/Applets,
Machine Language, Circuit Design, and Theory of Computation

• CS155a/Sum03 – 12 CS majors/Masters students learning standard 3d
Graphics

• INET92a/Sum03 – 4 CS majors developing databased backed servlet wid-
gets including bulletin boards, registration tools, etc.

• CS200/Aut03 – 4 CS graduate students writing a joint paper on Group-
ware in Education

The TYPCosi course is especially interesting as it is part of a program that
brings bright students from under-resourced schools into an elite university for
a year of immersion during which time they apply to elite colleges. The students
generally have very little experience with computers, but are highly motivated.
In the non-major Computer Literacy course (CS2a), the vast majority of the
students had no previous experience in computer programming. The other
courses were made up of advanced undergraduates or graduate students.

We will discuss how the GREWPtool technology was introduced in these
courses. Using this kind of technology provides them both enriches their vocab-
ulary of kinds of software applications while an affording them the opportunity
to collaborate on what for them will be challenging material in a manner that
helps them overcome their fears with technology. Ideally, their experience with
chat provides a sufficent base to allow them to explore other types of interaction.
We describe some our experience.

2

Figure 1: View of the GREWPtool

2 GREWPtool

2.1 Design

GREWPtool, shown in Figure 1, is primarily composed of 3 integrated pieces
of software in 4 frames (the two smaller windows in the forground are an eval-
uation of the code shown in the editor component, and the text output of that
evaluation). Going clockwise they are: an IM-like chat, a public web browser,
a synchronous shared code editor, and a private web browser. We used elastic
windows to mitigate the issue of limited screen real estate [3]. Because we did
not employ strict WYSIWIS [22] users could reshape the frames according to
their personal preferences without effecting their partner’s views.

The Chat frame provides a means for explicit communication outside the
source code in the editor.

The Public Browser serves as a common resource for students which features
links to webpages on syntax and usage. Each member of a GREWPtool group
has an associated tab in this frame. This allows students to watch (but not
control) each other’s browsing activities.

The editor frame supports students writing to the same piece of code simul-
taneously. Features were kept to a minimum to simplify implementation and
use. Cut and paste operations are accomplished with keyboard shortcuts while
the File menu allows users to load files and save locally. Each document created

3

is a potential group or shared document (i.e. other users can join the group and
edit it) and is associated with a unique tab in the editor pane. This makes it
easy for users to work on serveral different documents and/or in several different
groups at the same time. In Figure 1 the user has 6 active documents (and an
instance of the VCR which we describe later), with the focus on “tim–lecture”.
The editor also has two modes: edit and watch. Users in watch-mode have
their editors scroll automatically with the activity of editing users. Users in
edit-mode can type directly into the document.

The Private Browser usually starts with a bulleted list specifying task re-
quirements. Users can then follow links or visit any page of their choosing. The
“private” nature of the frame means the user can traverse the web independently
of their partners.

At start up each user is automatically assigned a unique color. This is used
for their cursor, the last 20 characters they typed into the editor, and the color
of their chat. All activity in GREWPtool is recorded and replayable through a
VCR mode which features variable delay play, fast forward, and rewind controls.
The VCR is a complete replayable transcript of all user interface/domain ac-
tions. The approach to VCR technology for Groupware that we follow was first
explored in detail by Landman [9, 10] and has enabled new analysis techniques
[4].

Implementation GREWPtool was implemented in Jscheme (a Scheme
dialect with full and transparent access to Java) as part of the opensource
groupscheme project hosted at Sourceforge [5]. The editor uses a variation
of the Operational Transformation techniques of Ellis and Gibbs similar to that
of Jupiter and NetEdit [2, 23, 28, 19]. It relies on a central server to handle
event serialization and is comprised of around 5000 lines of Scheme.

3 Collaborative Editor Pedagogy Patterns

In this section we describe our experiences using GREWPtool in the classroom
and the pedagogical methods it affords. These can be characterized along the
parameters of:

• Group Size: This can vary from having one group containing all students
in a class to several groups, each containing 2-4 students and an instructor,
to each student having their own group (which the instructor and TAs can
join).

• Floor control: Possible options are for the instructor to edit while the
students all watch, for one selected student to edit and everyone else watch,
or for all students in a group to simultaneously edit.

• Group Goal. The editor can be used for several different purposes in-
cluding demonstrating programming techniques, teaching debugging skills,
assessing student comprehension (through quizzes or group quizzes), and
practicing new programming skills.

4

• Class Focus: The instructor can request the focus of the students by
turning on the overhead computer projector and displaying the editing
window of any particular group. Alternatively, the instructor can ask
all students to work in their own groups (using chat to avoid a noisy
classroom).

We enumerate several successful uses of GREWPtool below. Because we are
still exploring the utility of this software, this is not meant to be a comprehensive
list. For each pedagogical pattern revealed by GREWPtool we present the
Method of its application and an Analysis of its effects.

3.1 The Whole-Class-Group-Coding Pattern

In this pattern, the instructor creates a shared document that all students con-
nect to.

3.1.1 Case Study 1: a 4 person HTML lab

Method The instructor creates a shared document table.html and asks all
students to join. The instructor then creates a webpage template containing a
table with missing rows. Each student is assigned a row. The students complete
their rows and save locally. Everyone views the result of their code in their own
browser. The entire group debugs the webpage with individuals taking turns
editing their own rows in front of the class. The instructor saves and views the
corrected page on the projector.

Analysis The Group Coding allows larger tables to be constructed in less
time. The Group Debugging process allows students to learn good debugging
skills, as they find problems, discuss possible causes, and try possible fixes for
their own and their classmates’ code.

3.1.2 Case Study 2: a 12 student Graphics Lab

Method The instructor creates a shared document SimpleTest.java and asks
all students to join. Students enter into watch-mode so their editor’s scrollpanes
automatically follow instructor edits. This is projected on a large screen at the
front of the classroom. The instructor loads initial code drawing a rotating
pyramid and rewrites it to draw a multijointed arm swinging back and forth.
The students save and run locally after each stage in the development. The
instructor asks for volunteers to write parts of the code. They all edit the same
program at the same time and debug as a whole. Students reference specific
lines and ask questions by typing comments into the editor near the code in
question.

Analysis Here again, the group can code larger programs in less time since
all are working simultaneously. Debugging becomes a group effort benefiting
from many eyes and insights. Since all students can see each others code, they
are in effect, working on a virtual blackboard. This helps build their program-
ming vocabulary and brings a sense of community to the classroom.

5

3.2 The Multiple-Small-Group-Coding Pattern

The class breaks up into small groups (2-4 students each). One person in each
group creates a shared document that their partners connect to. The instructor
and TAs join any or all groups to chat, add code comments, or edit.

3.2.1 Case Study 3: a 12 person Graphics Lab

Method Continuing from case study 2, the instructor asks the class to break
into groups of 3-4 (one group per row of computers) and asks each group to
modify the code to put a spinning propeller at the end of the multijointed arm.
The students communicate by talking rather than chatting, but stay seated at
their terminals and each type into their group’s program window. The instructor
moves electronically from one group to another, offering help where needed.
When each group completes the instructor saves, compiles and runs their code,
displaying the results at the front of the room with the projector.

Analysis The smaller groups provide a more tightly coupled interaction
that is most similar to paired programming. As a result, students in each group
learn by asking each other questions, commenting on each other’s code, and
observing each other’s style.

3.3 The Language-Lab Pattern

All students work on their own code. The instructor (and possibly one or more
TAs) join these single-student groups to answer questions and make suggestions.

3.3.1 Case Study 4: a 10 person web programming lab

Method Students work on their individual homework assignment, which is to
create a personal webpage. Each student creates a shared document and loads
in the current version of their homework. The instructor and TAs join each
student group and move electronically from student to student observing their
work and asking if they need help. Students can also ask for help aloud.

Analysis This is similar to a standard programing lab except that the in-
structor has easier access to observe students electronically (whether the stu-
dents are aware of this or not). If one student needs a lot of attention the rest
of the class doesn’t need to know.

3.4 The Group Debugging Pattern

Students write code and are asked to intentionally insert errors for each other
to catch (they occaisionally insert none to keep their classmates on their toes).
The entire class then attempts to find errors and suggest corrections.

6

3.4.1 Case Study 5: a 10 person Web Programming lab

Method Students write examples of HTML code for tables and insert various
types of errors (missing brackets, incorrect style parameters, unclosed tags, etc.).
They are given about 5 minutes to write their code. The class then debugs each
student’s program collaboratively.

Analysis This pattern removes the stigma of making mistakes as no one
knows if a given bug is intentional or not. Students compete and congratulate
each other for creating and finding subtle bugs. Common errors are revealed to
inform future debugging.

4 Integrating GREWPtool into the classroom....
a more detailed evaluation

In this section, we discuss our experience integrating this tool into our courses
and the way in which it changed the courses. An instructor contemplating the
use of such a tool must make many pedagogical choices – when to introduce the
tool, how to introduce it, how often to use it. In most of the courses mentioned
in section 1, the GREWPtool was introduced early and used almost every class
day.

In the medium sized laboratory courses (TYPCosi and the CS155a graphics
class) which each had 10-20 students, the tool was introduced in the first week
of class. The instructor showed the students how to download the tool as a jar
file and how to start it up (double click on the jar) as well as how to create and
join collaborative sessions.

In pre-GREWPTool versions of these courses, the lectures were taught with
a computer projector where the instructor would demonstrate the programming
techniques and relevant concepts on a screen visible to all students. The stu-
dents would also use part of the lab time working on individual assignments
where the instructor (and sometimes TAs) would be available to help individ-
ual students. Once the GREWPtool was introduced the courses became much
more interactive and there was a noticeable increase in the level of participation
among the students.

Consider for example the first type the GREWPtool was introduced in the
Spr2004 TYP Cosi class, which had about 20 students, none of whom had any
programming experience. The students were initially shown how to start up the
tool and how to join the instructor’s editing session. Once they had joined they
could see the code the instructor was typing appear on the big screen at the
front of the classroom, as well as on their own computer.

At the time were studying lists and so it was natural to construct a class
list where each student would build their own list element. During this initial
programming period, students who did not understand how to create the list
element watched others (on their own computer screen) and were able to learn by
example. Once everyone had completed (which required some class discussion),
the instructor evaluated the HTML and there were many errors (mostly missing

7

punctuation).
This led into a group debugging session where the students as a class would

search for errors and in the process we learned some good debugging skills
together. After the webpage was debugged, we repeated the cycle by expanding
our entries (adding CSS style to change the color, background, and font) and
repeated the group coding/ group debugging cycle.

At one point, one of the students remarked that someone had deleted some
of his code and this provided an opportunity to use the VCR replay feature to
roll back to a point in the class before the code had been deleted. The students
were able to reflect on their group performance (in high speed) and get a quick
review of the activities of the day, as well as an introduction into how to review
the days lecture on their own at a later date.

In the rest of the class, the students were asked to refine their debugging
skills by writing a simple HTML page and intentionally introducing one or more
subtle errors into the page. To do this they each created a new document and
the instructor joined each of the students groups so that he could display any
student’s program on the main screen. We then went through each student’s
code and, as a group, attempted to identify and correct the bugs.

At the end of this first 90 minute exposure to GREWPtool, the students had
a good introduction to the use of the GREWPtool and also came away with a
good understanding about how to create lists and use CSS in HTML, as well
as a better understanding of the kinds of mistakes people tend to make and the
strategies that can be used to debug programs.

All of our students were regular users of Chat programs and this exposure
to network interaction is probably the reason they had no trouble mastering
the basic features of the collaborative environment (co-editing). A negative
consequence of their familiarity with chat was that they need to be reminded
that the chat panel was to be used for academic concerns and not for social
conversation. This had to be stressed several times as it was counter to their
experience with that user interface, but eventually they learned to chat as if
they were raising their hand and making a public comment in class.

While GREWPtool has been quite successful in the classroom, the expe-
rience for remote users has been less effective. In the cases where students
participated from off-campus, we have found it necessary to assign one student
in the class to be the “scribe” for remote students. Their role is to use the
chat panel to keep remote students appraised of what is happening in the class
(what the instructor is saying, what the class is doing, etc.) The addition of
an audio channel might partially alleviate this problem, but even when remote
users were connected by telephone there were awareness issues (wondering if
they were still listening, etc.) It is likely that classes with all students being
remote would remodel communication to alleviate these issues. As it is, one
or two remote students are simply left behind the curve of in-class, face-to-face
interaction.

8

5 Final Remarks

In all classes in which we have used the GREWPtool, we have found the students
need very little instruction on how to use it. It appears that collaborative
editting (two or more keyboards for one document) is a very natural process.
We’ve also found that the classroom takes on a more active feel as everyone is
engaged. The students know that their work is either being seen by everyone at
the time, or will be shown to the class later, and so participation is mandatory.
We have not compared classes that use GREWPtool to classes that use pair
programming or extreme programming as the collaborative editing is just one
aspect of the way in which this tool changes the classroom dynamics.

Although we have just begun to explore the pedagogical opportunities made
possible by this tool, we have observed several key advantages that it offers over
traditional programming laboratory techniques.

• Group programming allows students to benefit from each other’s insights.

• Group debugging allows students to learn from each other’s mistakes.

• Instructors and TAs can rapidly monitor and support multiple individuals
and groups with the click of a button.

• Interactive lectures provide students a sense of agency and promote aware-
ness.

• Multiple coders allow larger problems to be tackled in one class session.

• Whole class coding exercises help build a sense of cohesion in the class-
room.

References

[1] Timothy H. DeClue, Pair programming and pair trading: effects on learning
and motivation in a CS2 course, J. Comput. Small Coll., 18, 5, 2003, 49–56,
The Consortium for Computing in Small Colleges.

[2] C. A. Ellis and S. J. Gibbs., Concurrency control in groupware systems., In
ACM SIGMOD89 preceedings, Portland Oregon, 1989..

[3] Eser Kandogan and Ben Shneiderman, Elastic Windows: evaluation of
multi-window operations, Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, 1997, 0-89791-802-9, 250–257, Atlanta,
Georgia, United States, http://doi.acm.org/10.1145/258549.258720, ACM
Press.

[4] Feinman, A., and Alterman, R., Discourse Analysis Techniques for Modeling
Group Interaction., Ninth International Conference on User Modeling (in
press), 2003.

9

[5] Timothy J Hickey, Incorporating Scheme-based Web Programmming into
Computer Literacy Courses , Proceedings of the Scheme2002 workshop.

[6] Timothy J. Hickey, J. T. Langton, Kenroy Granville, Richard Alterman, TA
Groupware, Tech. Rep. CS-02-222, CS Dept., Brandeis University, 2002.

[7] Klaus Marius Hansen and Anne Vinter Ratzer, Tool support for col-
laborative teaching and learning of object-oriented modeling, Proceed-
ings of the 7th annual conference on Innovation and technology in com-
puter science education, 2002, 1-58113-499-1, 146–150, Aarhus, Denmark,
http://doi.acm.org/10.1145/544414.544458, ACM Press.

[8] Seth Landsman and Richard Alterman, Analyzing Usage of Groupware,
Tech. Rep. CS-02-230, CS Dept., Brandeis University, 2003.

[9] Seth Landsman and Richard Alterman, Building Groupware On THYME,
Brandeis University Tech Report CS-03-234

[10] Seth Landsman and Richard Alterman, Analyzing Usage of Groupware
Brandeis University Tech Report CS-02-230.

[11] J. Langton, T. Hickey, and R. Alterman, Integrating Tools and Resources: a
case study in building educational groupware for collaborative programming
to appear in CCSCNE 2004, (23-24 April 2004) Schenectady, NY.

[12] Lydia M. S. Lau and Jayne Curson and Richard Drew and Peter M.
Dew and Christine Leigh, Use of Virtual Science Park resource rooms
to support group work in a learning environment, Proceedings of the
international ACM SIGGROUP conference on Supporting group work,
1999, ISBN: 1-58113-065-1, pp. 209–218, Phoenix, Arizona, United States,
http://doi.acm.org/10.1145/320297.320322, ACM Press.

[13] Charlie McDowell and Linda Werner and Heather Bullock and Julian Fer-
nald, The effects of pair-programming on performance in an introductory
programming course, Proceedings of the 33rd SIGCSE technical sympo-
sium on Computer science education, 2002, 5-58113-473-8, 38–42, Cincin-
nati, Kentucky, http://doi.acm.org/10.1145/563340.563353, ACM Press.

[14] C. McDowell, B. Hanks, L. Werner, Experimenting with Pair Programming
in the Classroom, Proceedings of the 8th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, 2003, 60–64,
Thessaloniki, Greece, ACM Press.

[15] Alex Mitchell and Ilona Posner and Ronald Baecker, Learning to Write
Together Using Groupware, CHI, pp. 288-295, 1995.

[16] Nachiappan Nagappan and Laurie Williams and Miriam Ferzli and Eric
Wiebe and Kai Yang and Carol Miller and Suzanne Balik, Improving the
CS1 experience with pair programming, Proceedings of the 34th SIGCSE
technical symposium on Computer science education, 2003, 1-58113-648-X,

10

359–362, Reno, Navada, USA, http://doi.acm.org/10.1145/611892.612006,
ACM Press.

[17] Neuwirth, C., Kaufer, D., Chandhok, R. And Morris, J., Issues in the design
of computer support for co-authoring and commenting. , Proceedings of the
third conference on CSCW, 1990, pp. 183-195, Baltimore, MD, USA, ACM
Press.

[18] J. T. Nosek, The Case for Collaborative Programming, CACM, pp. 105-
108, 1998.

[19] D.A. Nichols, P. Curtis, M. Dixon, and J. Lamping, High-Latency, Low-
Bandwidth Windowing in the Jupiter Collaboration System, Proceedings of
ACM UIST 95, November 1995, 111–120.

[20] Lucia Rapanotti and Canan Tosunoglu Blake and Robert Griffiths, eTu-
torials with voice groupware: real-time conferencing to support computing
students at a distance, Proceedings of the 7th annual conference on Inno-
vation and technology in computer science education, 2002, 1-58113-499-
1, 116–120, Aarhus, Denmark, http://doi.acm.org/10.1145/544414.544451,
ACM Press.

[21] Denis Riordan, Towards an integrated learning laboratory environment for
first-year computer science students, SIGCSE Bull., 34, 4, 2002, 0097-8418,
112–116, http://doi.acm.org/10.1145/820127.820180, ACM Press.

[22] Stefik, M., Bobrow, D., Foster, G. Lanning, S., and Tatar, D., WYSIWIS
Revised: Early experiences with multi-user interfaces, ACM TOIS, 5(2),
147–167, 1997.

[23] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen., Achieving conver-
gence, causality-preservation, and intention-preservation in real-time coop-
erative editing systems., ACM Transactions on Computer-Human Interac-
tion, 5(1):63?108, Mar. 1998.

[24] Svetlena Taneva and Richard Alterman and Kenroy Granville and Michael
Head and Timothy J. Hickey, GREWPTool: A System for Studying Online
Collaborative Learning, Brandeis Computer Science Tech Report, 2004.

[25] Laurie Williams and R. R. Kessler, Experimenting with Industry’s ’Pair-
Programming’ Model in the Computer Science Classroom, Journal on SW
Engineering Education, Dec. 2000.

[26] Laurie Williams and Richard L. Upchurch, In support of stu-
dent pair-programming, Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education, 2001, 1-
58113-329-4, 327–331, Charlotte, North Carolina, United States,
http://doi.acm.org/10.1145/364447.364614, ACM Press.

11

[27] Teresa Hubscher-Younger and N. Hari Narayanan, Constructive and col-
laborative learning of algorithms, Proceedings of the 34th SIGCSE tech-
nical symposium on Computer science education, 2003, 1-58113-648-X, 6–
10, Reno, Navada, USA, http://doi.acm.org/10.1145/611892.611919, ACM
Press.

[28] Zafer, A., NetEdit: a Collaborative Editor, Master of Science, University
de Virginia, USA, 2001, 82 pages.

[29] Bernd Zupancic and Holger Horz, Lecture recording and its use in a tradi-
tional university course, Proceedings of the 7th annual conference on Inno-
vation and technology in computer science education, 2002, 1-58113-499-1,
24–28, Aarhus, Denmark, http://doi.acm.org/10.1145/544414.544424, ACM
Press.

12

