
Integrating tools and resources: a case study in building
educational groupware for collaborative programming ∗

John Langton
Computer Science

Department
Brandeis University
Waltham, MA, USA

psyc@cs.brandeis.edu

Tim Hickey
Computer Science

Department
Brandeis University
Waltham, MA, USA

tim@cs.brandeis.edu

Richard Alterman
Computer Science

Department
Brandeis University
Waltham, MA, USA

alterman@cs.brandeis.edu

ABSTRACT
This paper presents design implications for educational group-
ware as revealed by GHT (Group Homework Tool), a same
time different place groupware tool built to support syn-
chronous, collaborative coding among novice programmers.
We detail the design, implementation, evaluation, and re-
design of GHT, focusing on the issues of awareness, control,
evaluation and scaffolding. GHT capitalizes on trends of
technology and collaboration in the traditional learning en-
vironment by supporting distance learning, remote access
to TAs and tutors, and facilitating co-located and remote
group work. Constructing such software for a computer sci-
ence curriculum provides unique challenges as one must inte-
grate the tools used by a programmer, the resources used by
a learner, and the widgets used to support group interaction.
By combining common groupware components with our own
shared editor we were able to exploit the educational bene-
fits in a modified version of extreme programming [1]. Our
research informs future design efforts by building upon pre-
vious investigations of integrated, cooperative software in a
learning environment [10, 12, 11].

1. INTRODUCTION
Educational institutions are increasingly embracing new tech-
nologies and software to aid instruction [19, 20, 21] At the
same time, the concept of cooperative learning [8] is gaining
acceptance and a place in the classroom [22]. We wanted to
exploit the benefits of both in a same time/different place
groupware tool built for novice programmers in an intro-
ductory computer science course [7]. To do this we needed
to balance the needs of a learner with those of a program-
mer while supporting coordination. This unique set of con-
straints revealed equally unique design imperatives for edu-
cational groupware in the areas of awareness, control, eval-

∗This work was supported by the National Science Founda-
tion under Grant No. EIA-0082393

uation, and scaffolding.

Soloway, Papert, and others [17, 15, 13] have recommended
a pragmatic approach to the design of educational software
and prescribe a set of general guidelines. Such guidelines
also exist for groupware [6, 14, 2]. While the goals of each
are not mutually exclusive, they sometimes have conflicting
interests. One divergence we happened upon while design-
ing our tool is the issue of explicit communication: while
commercial groupware often tries to reduce the amount of
communication necessary during focal points of coordina-
tion, we wanted to utilize it as an opportunity for students
to participate in joint exploration and ”sense-making” [16].

To negotiate these disparate requirements we integrated var-
ious software tools, following the examples of [11]. In this
paper we present

• the combination of groupware components that we found
most effective for supporting students in an introduc-
tory computer science course.

• insights into issues of awareness and control in the de-
sign of educational groupware to promote cooperative
learning and support synchronous collaborative cod-
ing.

The following sections cover our iterative design process, re-
sults of an experiment using GHT with novice programmers,
methods of evaluation, redesign, and guidelines for future
design efforts.

2. REQUIREMENTS ANALYSIS
2.1 Motivation
The potential benefits of educational groupware have been
widely recognized [5]. Today’s students are frequently dis-
persed whether they are adult learners, industry profession-
als seeking new skills, or off campus undergraduates. In
this environment groupware can facilitate distributed lec-
tures and TA sessions, however its advantages far exceed
distance learning. GHT was built to exploit the benefits
of cooperative learning during both co-located and remote
groupwork. One of our main goals was to lower the overhead
for a variety of students learning how to program, includ-
ing non-science majors. To do this we needed to establish



a model of coordination, an effective combination of group-
ware tools, and sufficient scaffolding for initiating and struc-
turing collaboration.

Some influential educational theories state that learning takes
place when students are actively engaged in collaborative
sense-making activities among a community of actors ; that
learners’ participation in constructive activities help them
internally represent the knowledge they are seeking to ac-
quire. The common denominator of these theories is that
we can foster learning by providing students with the op-
portunity to:

1. use the tools of the targeted domain of knowledge, and

2. coordinate with peers during tool use within that do-
main.

In the case of supporting groups of students learning to
program this meant providing an Integrated Development
Environment (IDE) designed to facilitate cooperative cod-
ing. Traditional models of collaborative programming em-
ploy the use of concurrency control software like CVS. These
tools, however, minimize the required communication be-
tween coders, an essential ingredient in cooperative learning.
We chose instead to look for a more interactive model.

The idea of maximizing interaction and communication be-
tween coders is quite popular in the form of extreme pro-
gramming [1]. The benefits of this innovative theory have
been debated strongly, and are most widely recognized in
industry. However, participants of pair programming have
repeatedly noted its educational benefits [10].

In designing GHT we decided to extend this approach to
support groups of arbitrary size synchronously coding. We
anticipated that during group assignments students would
establish a consensus on the structure of their activity, break
up the work, and then independently program in tandem.
This would promote modular code while allowing questions
and statements during momentary reviews of each other’s
work. We further surmised that students would need to
agree when to compile and how to debug due to the inter-
dependence of their code. This would provide an oppor-
tunity for them to enter into explanatory practices should
their code not produce the expected result. It would also
enable students to engage in self-explanations by following
the example of a professor’s code during class and a TA’s
corrections during office hours.

Having established a primary tool and framework for coor-
dination we needed to provide students with the necessary
resources for completing an assignment. These could be as
simple as a task definition and API specification, however
needed to impart some structure to the activity. This struc-
ture would act as scaffolding to help initiate collaboration
and guide solution production. In this way the responsibil-
ity for establishing roles could be transferred from groupware
design to user interpretation. We speculated that for open
ended assignments a brain storming component would also
be benefitial.

2.2 Components

Previous studies have shown effective integrations of group-
ware for aiding instruction [11, 10] Determining the ”effec-
tive integration” for GHT would only be revealed through
repetitive design cycles. For our initial design we combined
the following components:

• A synchronous code editor: to support students
writing to the same piece of code simultaneously.

• HTML frames for an assignment definition and
resource page: to act as scaffolding in starting the
assignment and structuring coordination

• Chat: to facilitate explicit communication

• Shared Whiteboard: to help the students brain-
storm various aspects of their project (e.g. GUI lay-
out).

Students were well acquainted with single user versions of
editors, whiteboards, web browsers and multi-user chat.

2.3 Coordination
After selecting our components we had to address the fol-
lowing standard groupware concerns:

• Awareness: users need to know where they and their
partners are in a shared workspace [5, 12].

• Control: who has control of the shared workspace can
be a complicated issue. Some systems mandate turn
taking [10] while others allow users to choose [20].

The difficulty in addressing these issues lay in maintaining a
balance between tools and learner resources. The scaffolding
provided by our HTML frames would impose constraints on
how students interact. We were led to ask questions like:

• Should we let students decide how to break up the
work or specify this in the assignment definition?

• If we assign roles will we constrain coordination and
the resulting benefits of collaboration?

• If we don’t will students spend too much time figuring
out where to start and less time figuring out how to
program?

To fulfill our design requirements we followed an iterative
process similar to that prescribed by [13]. First we analyzed
how programmers work and assessed where learners would
need guidance while participating in group activities. We
then designed scaffolding keeping in mind the collaborative
nature of GHT and the tradeoff between ease of collabora-
tion and structure in activity. Both of these processes were
informed by repetitive groupware walkthroughs [17]. The
next section describes the initial design of GHT.



Figure 1: View of the GHT



3. DESIGN
GHT is comprised of 4 integrated pieces of software in 5
frames as shown in Figure 1. Going clockwise they are:
a HTML frame presenting the current assignment, a syn-
chronous shared code editor, a HTML frame providing links
to resources on syntax and usage, an IM-like chat, and a
white board. To ameliorate the problem of limited screen
real estate we used elastic windows [11]. Because we did not
employ strict WYSIWIS users could reshape the frames ac-
cording to their own personal preferences without effecting
their partners’ views.

The Assignment frame was comprised of a bulleted list spec-
ifying task requirements. These were open ended impera-
tives such as ”include a button with an associated action in
your program”. Users were free to implement the specifics
in whatever way they saw fit. This allowed multiple correct
solutions to each requirement thereby promoting coordina-
tion among users as they try to reach a consensus on one.
Any more structure would have constrained the interaction,
limiting the students’ need and desire to explore possible
solutions. By ordering the bulleted points in a top down
fashion students could iterate through them in a stepwise
procedure. This facilitated a kick start to the process and
aided in partitioning the work load. We surmised that the
assignment would need to be referred to more frequently
than the resources. Each was therefore provided an individ-
ual frame so that users could collapse the resources without
losing the assignment.

The editor frame supported students writing to the same
piece of code simultaneously. Features were kept to a min-
imum to simplify implementation and use. Cut and paste
operations were accomplished with keyboard shortcuts. As
a secondary scaffolding support students were supplied with
skeleton code files. These contained basic elements of the as-
signments such as the body tag of an html page, and could
be loaded into the editor via a ”File” menu.

The resources frame served as a final scaffolding support.
Using it, users could refer to examples and syntax references
anywhere on the internet. The starting page provided links
deemed practical by the instructor.

The Chat frame provided a means for explicit communica-
tion outside the source code in the editor.

The whiteboard frame allowed students to brainstorm var-
ious aspects of their program (e.g. GUI design). Again
features were kept to a maximum. Users could draw lines,
rectangles, free hand, or type onto the picture.

3.1 Mediating coordination:
Awareness: At start up each user was automatically as-
signed a unique color. This was used for their cursor, the
last 20 characters they typed into the editor, and their activ-
ity in the whiteboard. Students could easily identify where
everyone was as long as they could remember who was as-
signed which color. We considered adding a legend, however
identity in this case was relative; knowing the name of the
blue user did not matter as much as knowing that the same
person who drew the blue square was coding on line 3 in the
editor.

Control: In our initial design we intended to establish roles
for students explicitly i.e. one student would program the
interface while another would program the backend, or one
student would comment while another would code. This
schema utilized a locking mechanism so one person could
not interfere with the activities of another. In the end we
decided that this would put too much of a constraint on
how users interact, disallowing simple operations like com-
menting and coding on the same line. Instead we gave users
control of the same text at the same time. This opened up
possibilities for coordination and thus promoted cooperative
learning.

4. IMPLEMENTATION
GHT was implemented in Jscheme [7], an open-source im-
plementation of Scheme in Java with full and transparent
access to the java libraries: (jscheme.sourceforge.net). We
chose this language for several reasons:

• our familiarity with the language and the ease with
which we were able to use it to rapidly prototype the
system. Especially notable is the ability to use the
read/eval/print loop to develop code incrementally.

• its ability to run on many platforms (thanks to its
Java-based implementation). It is currently imple-
mented in about 6000 lines of Jscheme code (including
all of the networking libraries) and is deployed as a
600K double-clickable jar file.

• its simple, transparent interface to Java, which pro-
vides it with full access to the extensive Java libraries.
The java.nio.* package was especially useful, as were
the javax.swing packages.

The low level networking was implemented by sending s-
expressions (nested lists of symbols, strings, and numbers)
as text through sockets. This flexible interface greatly en-
hanced our ability to rapidly prototype the system. The
socket handling was all implemented using the java.nio pack-
age. One thread was responsible for managing all sockets
and socket servers. Since java.nio supports non-blocking
I/O this scales to hundreds of sockets, easily meeting the
requirements for the GHT project.

Each group of collaborating GHT clients is associated with
a broadcast server which allows clients to broadcast mes-
sages to all members of the group. The chat panel, shared
whiteboard, and cobrowsers were all implemented by send-
ing simple messages to the associated server. The only wid-
get whose implementation was moderately complex was the
shared editor.

We implemented a low-level layer of libraries for creating
group clients and group servers as well as a library of basic
widgets. Each widget was built with two operational modes
– the standard mode and a replay mode in which operations
come from a log file rather than from user inputs. The code
for this project and the libraries is available as part of the
opensource groupscheme project (groupscheme.sf.net).

The shared editor was implemented using a simple variant of
the well-known operational transformation approach intro-



duced by Ellis and Gibbs and used in most other collabora-
tive editors today [3, 18]. The main difference between our
approach and that of other systems is that we use a remote
echo (or full duplex) method in which insertions and dele-
tions are not executed locally on the client until after they
are transformed and bounced back by the server. The server
accepts all insert/delete requests and merges them (which
entails some modification of the operations). The clients
then apply the modified transformation to the text. This
introduces a small amount of lag (perceived as type-ahead),
but there were no complaints about this behavior from stu-
dents that used the system. The lag time for clients within
a metropolitan area (on broadband or modem connections)
is generally under 0.3 seconds.

The IDE features supported by the tool include evaluation
(and some highlighting) for Jscheme programs, for HTML
code, and for Java code.

5. EVALUATION
To evaluate the effectiveness of our tool we conducted an
ethnographic study of 6 students using GHT in pairs. Sub-
jects were placed at individual terminals out of each other’s
sight with the frames of GHT arranged as in Figure 1. There
were 2 sessions per pair, each lasting two hours and entailing
a different assignment. The first assignment was to code a
webpage using html, and the second was to code a simple
application using JScheme.

We conducted a brief exercise with study participants during
their first session to familiarize them with the features of
GHT. This contained the following directions: ”Please greet
your partner using the chat frame. Ask your partner for the
name of a shape, then draw that shape onto the whiteboard.
Load the file ’assignment1.html’ into your editor (only one
person needs to do this). Press the evaluate button on the
editor.” After pressing the evaluate button users would see
the results of the skeleton html code for the first assignment.
This was a mostly blank html frame with one or two words
saying something to the effect ”code here.” If there were any
problems the researcher would provide guidance, however
this was kept to a minimum so as not to bias the study.

GHT has a built-in logging system which records user ac-
tions during tool use. The VCR mode allows an analyst to
play back a log (moving forward and backward, single step
or fast forward) showing the interface from any student’s
view. This provided us with the ability to play back sessions
[9] and conduct an in-depth discourse analysis of all chat[4].
Additional logging enumerated everything from mouse clicks
to frame resizing. To insure that nothing was missed and
enforce communication only through the tool, investigators
were present during test sessions and kept personal notes of
interesting points in student interaction.

5.1 Observations
Awareness: The colored cursors of GHT effectively in-
formed users of who was where. In a number of surveys
there were requests that there be a ”panic button” or some
sort of device to capture the attention of a partner who was
not paying attention to chat. The obvious solution would
be to add aural cues for changes in the chat panel status
as this is most common technique employed by popular IM

clients. In the evaluation trials, there were no aural cues as
the students were in public areas where the computers are
muted. One interesting point here is that users could easily
go to the line of code where their partner was typing and
insert a few characters to get their partners attention, how-
ever students felt that this was either too many steps, not
fool proof, or considered too invasive. In either case this is
a testament to the fact that group coding consists of cycles
of waxing and waning collaboration.

cobrowsing We also observed that users spent a consider-
able amount of time coordinating their web browsers. For
example, one group was building a web page describing their
favorite basketball team and they took turns searching for
information on the web and inserting it into the page. They
each took responsibility for a subset of the team members
(effectively modularizing the problem), but to share results
of web searchs they had to type in URLs into the chat win-
dow, which frequently generated typos, confusion, and delay.
This resulted from their not being aware of the contents of
the other person’s web browser.

Control: Our purposeful lack of control structure forced
users to collaborate to a greater degree as they not only
needed to agree on what they were coding, but at what
points to stop and evaluate the code. These deliberations
contributed to learning since it required a clear conceptual-
ization of code requirements, interdependency of code seg-
ments (if one users code depended on another users unfin-
ished code it wouldn’t evaluate), promoted modularity in
coding style (since students were coding different parts they
only wanted to worry about how their code would access
the methods of their partners code, not how those methods
worked necessarily), and milestones in programming (stu-
dents evaluated often instead of coding the entire program
and then wasting time debugging a nightmare).

The minimalist approach to scaffolding was very effective.
Users did in fact complete the bulleted points in the assign-
ment description as a stepwise procedure. The most compli-
cated cognitive task seemed to be agreeing on a theme for
the web page or the jscheme application.

Collaborative editing Every group lauded the ability to edit
program code in the same editor at the same time. One
participant remarked that it was the first time a group pro-
gramming assignment actually took half the time. Other
methods presumably take more time because of the over-
head of splitting up the work in the beginning and then
merging the completely written pieces at the end.

The shared editor was used as a medium for communication
as well as an editor: instead of chatting about what line of
code their partner had in error, a user would often go to the
specific line of code in the editor and write their comments
there.

6. REDESIGN
The main issues we identified in the evaluation phase were:

• a rough transition when students moved between inde-
pendent work and close collaboration. Users wanted to



be able to easily see where their partners were editting
and to capture their attention.

• a need to coordinate more effectively in web browsing

• the whiteboard was never used.

To address the problems uncovered during evaluation, we
added a few new features and are currently observing their
impact:

• watch mode vs edit mode: We observed that a
common dynamic in the beginning of a session is that
one student would be the primary coder, while the
other student would comment on the code, ask ques-
tions, make suggestions, etc. in a style very similar to
pair programming in the extreme programming model.
After a few minutes of this sort of programming stu-
dents would often branch off to work on independent
parts of the program, and cycle back and forth between
close and loosely coupled interaction. This pattern of
collaboration allows a less experienced student who is
initiallly incapable of working independently meaning-
fully participate in her zone of proximal development
[Vygotsky, 1978].

To support this behavior, we added a watch-mode in
which the student’s editor window would automati-
cally scroll to keep the other students’ edits in view.
By switching to edit mode the student could turn off
this following behavior. In our current re-evaluation,
the watch-mode/edit-mode component seems to be the
most used modification. It indicates both a change in
role and a change in functionality.

• cobrowsing tabs: To help coordinate browsing we
expanded the help browser to include tabs for each
member of the group. This allows a student to watch
another students browsing activities (but not to con-
trol their browser)

• removal of the whiteboard: Since the whiteboard
was never used, we decide to remove it and free up
some screen real estate. For other problem sets it is
likely that the whiteboard would be more useful, but
for the problem sets we were considering it hindered
the tools effectiveness by limiting the size of the other
tools.

• a panic button: We decided to give the students
what they asked for (which is not always the right
choice). In this case, we added a button (with the
label ”panic”). Pushing this button pops up a large
window with the text: ”Please talk to me right now! –
STUDENT’S NAME” Unsurprisingly, it appears that
the ”panic button” is rarely used. Students try it out
in the beginning and then decide that it is too invasive.

6.1 Reevaluation
We are currently in the process of evaluating these changes
in another experiment involving 10 pairs and 5 singles work-
ing on a 2d graphics programming assignment in Jscheme.
The participants were given pre/post tests, surveys, and of
course fully logged group sessions.

The participants had widely varying backgrounds, from hu-
manities majors to graduate students in computer science.
They were all able to complete the assignment within about
90 minutes with minimal training and they enjoyed using the
tool. This provides evidence that the tool is simple enough
to be readily mastered by novices, yet powerful enough to
facilitate effective group interaction for programming assign-
ments.

The cobrowsing seems to have answered the complaint about
difficulties in coordinating around web locations. Likewise,
there have been no calls for a whiteboard or other graphical
communication tool. The small lag time in the editor (aris-
ing from our simple ”remote echo” approach) also did not
generate any comments or complaints.

The redesigned tool (renamed GREWPtool) is shown in Fig-
ure 2. The VCR component of that tool is shown in Figure
3.

7. OTHER APPLICATIONS
Although the GHT was designed for students collobarat-
ing on group programming assignments, we found that it
was also being used to allow teaching assistants to help stu-
dents with their programming assignments. To simplify this
interaction we modified the tool to allow a TA to partic-
ipate in several group projects simultaneously. This was
implemented using a tabbed pane, with one tab providing
an interface to join new groups or to create a shared doc-
ument, and the other tabs representing individual shared
documents. The logging/VCR feature has proved useful as
well as it provides a mechanism for a TA to review what
a particular student or group has been doing while the TA
was working with other students. We have plans to use
the logging/VCR feature to allow instructors to explicitly
monitor the quanitity and quality of help that TAs provide
students as well as to help mentor TAs in their interactions
with students.

Once this tabbed architecture was introduced, we found that
the tool worked well in a computer laboratory classroom in
which students would work together in groups of two to four.
The instructor could then join each group and display the
work of any particular group on the overhead monitor so
that the class as a whole could see and analyze the work of
any group. The tool has been used in this capacity for classes
ranging in size from 6 to 15. We also found that students
who were not able to physically come to the class would
connect from home (via modem or broadband) and interact
remotely. This was only marginally successful and required
a copresent participant to use the chat window to keep the
non-collocated participants aware of what was happening in
the classroom.

8. CONCLUDING REMARKS:
There are several lessons that can be drawn from our expe-
rience.

Firstly, our study validates the utility of evaluating group-
ware with a close moment-by-moment analysis of the in-
teractions of real users on a real problem. This approach
formed the foundation of our evaluation scheme and effec-
tively pointed out which features were useful and which were



Figure 2: Redesigned GHT tool

Figure 3: The VCR tool in the redesigned GHT



counter productive. The methodology we employed in the
design was to purposefully limit the number of features, with
the intent of adding them if close analysis revealed a need.
Surprisingly, the analysis did not show any need to eliminate
the lag time in the group editor. It did point out areas where
the tool could support coordination (such as in cobrowsing).
Although one could possibly reach these same conclusions
with user interviews or by reviewing videotapes of the group
interactions, we found the VCR method to be both easy to
use and revealing. On average, an analyst can scan through
a one hour group interaction in approximately five to ten
minutes, although some sections require rewinding, replay,
and thoughtful consideration.

Secondly, our study demonstrated that the combination of
three familiar components (chat, editor, browser) with some
IDE features formed an easy to use environment for working
on group programming assignments. Students needed to de-
cide how to use the tool by themselves using the tool itself.
All groups were able to complete their assignments within
one hour and they seemed comfortable using the tool. The
only concept that was somewhat novel to them was that
two people could edit the same document at the same time,
without turn taking, but they quickly adapted to that. Sur-
prisingly, the tool also turned out to be useful in a number
of other contexts for which it was not specifically designed
(such as facilitating student-TA interactions, and as a tool
for coordinating and highlighting student work in a com-
puter lab).

Finally, our evaluation verified our assumption that the de-
gree to which students interacted would naturally wax and
wane over the course of the groupware session. Adherence to
a strict role-based model or to a turn-taking model would
have prohibited this type of interaction and resulted in a
much different educational experience for the participants.
We are currently evaluating the educational effectiveness of
the tool, but it is too early to tell whether this open approach
to collaboration will prove more effective than a traditional
lecture style of teaching.

9. REFERENCES
[1] K. Beck, Embracing change with extreme

programming. IEEE Computer, pages 70-77, Oct. 1999.

[2] Ehrlich, K. Designing Groupware Applications: a
Work-Centered Design Approach. Computer
Supported Co-operative Work, Beaudouin-Lafon, M.
(ed.), Wiley, Chichester, 1999, l-28.

[3] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In ACM SIGMOD89 preceedings,
Portland Oregon, 1989.

[4] Feinman, A., and Alterman, R., Discourse Analysis
Techniques for Modeling Group Interaction. Ninth
International Conference on User Modeling (in press),
2003.

[5] Melissa Glynn and Doug Vogel and Robert Briggs and
Howard Brown and Debra Cunningham, Issues in
technology supported learning (panel), Proceedings of
the international ACM SIGGROUP conference on
Supporting group work : the integration challenge,

1997, ISBN: 0-89791-897-5, pp. 7–8, Phoenix, Arizona,
United States,
http://doi.acm.org/10.1145/266838.276983, ACM
Press.

[6] Grudin, J. 1994. Groupware and Social Dynamics:
Eight Challenges for Developers. Communications of
the ACM, 37, 1, 92-105.

[7] Timothy J Hickey, Incorporating Scheme-based Web
Programmming into Computer Literacy Courses ,
Proceedings of the Scheme2002 workshop.

[8] Johnson, D, Johnson, R, Smith K, Active Learning:
Cooperation in the College Classroom, ISBN
0-939603-14-4, 1998

[9] Seth Landsman and Richard Alterman Analyzing
Usage of Groupware: THYME Is On Your Side,
Brandeis University Tech Report CS-02-230.

[10] Lydia M. S. Lau and Jayne Curson and Richard Drew
and Peter M. Dew and Christine Leigh, Use of Virtual
Science Park resource rooms to support group work in
a learning environment, Proceedings of the
international ACM SIGGROUP conference on
Supporting group work, 1999, ISBN: 1-58113-065-1, pp.
209–218, Phoenix, Arizona, United States,
http://doi.acm.org/10.1145/320297.320322, ACM
Press.

[11] Joan Manuel Marquis and Leandro Navarro, WWG: a
wide-area infrastructure to support groups, Proceedings
of the 2001 International ACM SIGGROUP Conference
on Supporting Group Work, 2001, ISBN:
1-58113-294-8, pp. 179–187, Boulder, Colorado, USA,
http://doi.acm.org/10.1145/500286.500314, ACM
Press.

[12] Lisa Neal, Virtual classrooms and communities,
Proceedings of the international ACM SIGGROUP
conference on Supporting group work : the integration
challenge, 1997, ISBN: 0-89791-897-5, pp. 81–90,
Phoenix, Arizona, United States,
http://doi.acm.org/10.1145/266838.266868, ACM
Press.

[13] Papert, S. 1993 The Children’s Machine: Rethinking
School in the Age of the Computer, Basic Books, NY.

[14] Pinelle, D., and Gutwin, C. 2002 Groupware
Walkthrough: Adding Context to Groupware Usability
Evaluation. In Proceedings of CHI 02 (Minneapolis,
Minnesota, April 2002) ACM Press, 455-462.

[15] Chris Quintana and Joseph Krajcik and Elliot
Soloway, A Case Study to Distill Structural Scaffolding
Guidelines for Scaffolded Software Environments,
Proceedings of the SIGCHI conference on Human
factors in computing systems, 2002, ISBN:
1-58113-453-3, pp. 81–88, Minneapolis, Minnesota,
USA, http://doi.acm.org/10.1145/503376.503392, ACM
Press.

[16] Schoenfeld, A. H. (in press) On mathematics as
sense-making: An informal attack on the unfortunate
divorce of formal and informal mathematics. In D. N.



Perkins, J. Segal, and J. Voss (Eds.), Informal
reasoning and education. Hillsdale, NJ: Erlbaum.

[17] Elliot Soloway and Shari L. Jackson and Jonathan
Klein and Chris Quintana and James Reed and Jeff
Spitulnik and Steven J. Stratford and Scott Studer and
Jim Eng and Nancy Scala, Learning theory in practice:
case studies of learner-centered design, Proceedings of
the SIGCHI conference on Human factors in computing
systems, 1996, ISBN: 0-89791-777-4, pp. 189–196,
Vancouver, British Columbia, Canada,
http://doi.acm.org/10.1145/238386.238476, ACM
Press.

[18] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality-preservation, and
intention-preservation in real-time cooperative editing
systems. ACM Transactions on Computer-Human
Interaction, 5(1):63?108, Mar. 1998.

[19] ”Logiciels libres et education”. Retrieved 5/27/03,
from http://libresoftware-educ.org/fr/carteFrance.html

[20] Retrieved 5/27/03, from
http://www.rittershofer.de/info/linux/linout.htm

[21] ”Software libero e educazione”. Retrieved 5/27/03,
from http://libresoftware-educ.org/it/carteItalieit.html

[22] ”Cooperative Learning Response to Diversity”.
retrieved 5/27/03, from
http://www.cde.ca.gov/iasa/cooplrng2.htm.


