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ABSTRACT

CLP(F) Modeling of Hybrid Systems

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by David Karger Wittenberg

We wish to rigorously model hybrid systems. Because models of hybrid systems
are often used in safety-critical applications, it is crucial to get accurate results with
explicit limits on the errors in the model and calculations. This requires a rigorous
approach. Any technique to model these systems which does not account for rounding
error or error in the approximation to the solution of the ODEs governing the problem
is not rigorous. We use CLP (Constraint Logic Programming) over interval arithmetic
to provide an explicit limit on rounding errors and on the ODE solution errors.





Preface

This work grew out of several areas I have worked in. In the late 1980s, I worked on

the verification of the VAX SVS1 (Secure Virtual System) computing system, which

was a trusted operating system designed to receive a National Center for Secure

Computation (NCSC) A1 certification (A1 was the highest defined rating).

Later I did some work on the issues of determining probabilities of extremely rare

events [Wit03] as an approach to trying to understand when one could believe that

a program had a failure probability of 1 failure in 109 hours, as the FAA specified

for programs controlling commercial aircraft. It wasn’t clear to me then, and isn’t

now, that one can reasonably assert that any large system has a reliability that high.

Hatton and Roberts’s [HR94] work showing that very high quality numeric software

introduces a cumulative numerical error of about 1% per 4000 lines of code contributed

to my interest in calculating numerical answers correctly.

When I saw Hickey’s CLIP [Hic00b] system which made it possible to soundly

do calculations over the real numbers on standard hardware, I became interested in

the question of how reliable numeric computation is, and whether we could combine

techniques from program verification with CLIP to produce more reliably correct

calculations over the reals.

This work may be considered as a start on a larger project of making a system to

analyze hybrid systems which would be easy enough to use for engineers to make use

of, and extremely likely to provide correct answers. This would be done by extending

1For a description of the SVS system, see Karger et al. [KZB+90] and [KZB+91]. The NCSC
ratings of that time are described in the “Orange Book” [ora85].
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CLIP’s interface to make it easier to use, integrating the work we did on compiling

constraint solvers with CLIP [HW99a], and then validating the resulting system.
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2 CHAPTER 1. INTRODUCTION

This thesis addresses the problem of rigorously modeling hybrid systems. It in-

volves combining several areas of research that have historically been separate. We

present some practical models, including working code (with timings) and argue that

this direction can be continued to provide much more confidence in the system’s

analysis than was previously possible.

The principle underlying this work is that studies of safety critical systems must

be as rigorous as possible. From this comes the requirement to bound all measure-

ments, parameters, and behaviours which can not be known exactly. Because all

measurements have associated error-bars, this seems to require some sort of sensi-

tivity analysis, or the ubiquitous use of interval arithmetic. We do not wish to use

approximations unless we can rigorously bound the error that the approximation in-

troduces. We use intervals ubiquitously. The idea behind interval arithmetic is to

express every real value X as an interval x = [xmin, xmax] with xmin ≤ xmax.

1.1 Hybrid Systems

The area which we seek to improve is software to model or analyze hybrid systems. A

hybrid system consists of a digital part (typically a small computer), and an analog

part (the physical system which the computer interacts with.) The study of hybrid

systems concentrates on systems used in safety critical applications such as air traf-

fic control [TLS99] or automobile, and automated highway systems [LL98] control.

The analysis tools for hybrid systems are also being used to analyze biological sys-

tems [BFH+04, LT04] We present a short history of hybrid system work in Chapter 2.

The hybrid systems we study have analog behaviour described by ODEs (Ordinary
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Differential Equations).

An important feature in a hybrid system modeling technique is the ability to

prove safety properties of a hybrid system. A safety property is a guarantee that if

the system is started in a reasonable state, it never enters some prohibited region of

the state space.

1.2 Requirements for Rigor

Because the systems we are interested in are safety-critical, have points of chaotic

behaviour, or would be extremely expensive to repair, it is important that the results

we get are correct. Ideally, one might prove the correctness of the programs, but

that is beyond our current ability, and would still leave problems with round off. We

make some effort to use techniques which are easily verified, though we have not yet

formally verified any of these programs.

In discussing the correctness of programs which give numerical results, it is im-

portant to distinguish between accuracy and precision. Accuracy is a measure of how

close the calculated result is to the correct result, while precision is a measure of

how closely the answer is described. An extremely precise answer may be completely

wrong, while an accurate answer must be at least as precise as it is accurate. Floating

point calculations using the IEEE 754 floating point standard [IEE85] double format

(64 bits total – the most commonly used) always give 53 bits of precision, but the

results are often not nearly that accurate.

In order to be fully rigorous, one must account for all sources of error, or even

uncertainty. There are several sources of error to deal with:
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• measurement errors - sensors which give the wrong readings

• construction errors - parts not exactly the size specified

• calculation errors - see von Neumann’s list in Section 3.1.2

• physics errors - uncertainties in the parameters of the equations for the system

• “messy physics” errors - areas where the behaviour is hard to model

The approach proposed here covers all of these error sources (except blunders in

calculation) in a single elegant way.

1.3 Tools used

The tools we use are Constraint Logic Programming (CLP) [JM94], interval arith-

metic [Moo66], and CLP(F) [Hic00a], a Constraint Logic Programming language,

which combines CLP with interval arithmetic, as well as adding the capability to

use ODEs directly in the description of a system. Logic programming is a relative

of functional programming in that the programmer states characteristics of the re-

sults desired, rather than specifying a procedure to achieve them. This style often

results in shorter, simpler programs which are easier to understand than procedural

programs. Like many CLP languages, CLP(F) is an extension to Prolog. A trivial

CLP(F) program to calculate the square root of 2 is:

| ?- {X^2=2,X>0}.

which returns
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X = 1.41421356237309... ? ;

no

| ?-

Note that one specifies the desired result (a number X such that X2 = 2) rather than

a procedure for taking square roots. CLP(F) allows constraints on function variables

as well as on interval variables. We discuss these tools at greater length in Chapter 3.

1.4 Contributions of this Thesis

The approach we propose is to model a hybrid system by a CLP(F) program in which

the ODEs can be expressed directly as constraints on function variables. This will

allow the program to directly represent the hybrid system in the sense that one can

analyze the hybrid system by simply analyzing the corresponding program.

The major innovation in this thesis is using CLP(F) with its function variables

and its ubiquitous intervals in modeling hybrid systems. This allows us to unify the

handling of measurement errors (sensitivity analysis), round off errors, incomplete

(in a limited way) specifications, and through techniques discussed in Section 6.3.4,

points where the ODEs are non-analytic or even discontinuous, all while retaining a

fully rigorous approach.

The innovations reported in this thesis are:

• Improved rigor in dealing with errors by using intervals ubiquitously in modeling

hybrid systems

• Improved ease in describing hybrid systems by using a language in which ODEs

can be expressed directly
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• Improved rigor in modeling of hybrid systems which are described by non-

analytic (or even discontinuous) ODEs.

• Rigorous modeling of hybrid systems whose specifications are incomplete or

poorly understood by using a “bounding box” constraint which includes all

possible behaviours.

• Improved ease of analysis. Because CLP allows constraints to be propagated in

either direction, one can easily ask questions like “What parameters give a par-

ticular period” as well as modeling to find out what period a set of parameters

produces.

Many earlier systems can solve some of these problems. The advantage gained by

using CLP(F) is that all of them are dealt with in one system, and in a consistent,

elegant way.

1.5 Organization of this Thesis

Because this thesis describes using a tool (CLP(F)) in an area (hybrid systems)

in which it has not previously been used, I start with introductions to both areas.

Chapter 2 provides an introduction to hybrid systems, and Chapter 3 provides an

introduction to CLP(F), which is the primary tool I use. Chapter 3 also provides

background on interval arithmetic and Constraint Logic Programming (CLP) which

are combined in CLP(F).

The heart of the thesis is Chapter 4, Chapter 5, and Chapter 6 which are where all

the new work is. Chapter 4 describes how I use CLP(F) to model hybrid systems by
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providing a rigorous model. Chapter 5 shows how to handle a more complex model,

and how one can use CLP(F) to analyze the behaviour of that model (Section 5.3). It

concludes with a few examples, and a discussion of the advantages CLP(F) has over

other modeling techniques.

Chapter 6 first extends the model to more complex systems, and then introduces

new techniques necessary for rigorously modeling the non-analytic and discontinuous

ODEs in more complex systems.

Chapter 7 describes several ways in which this work can be extended.

Appendix A is a snapshot of a draft of a manual for clip and CLP(F). While it’s

rather incomplete, it’s the best documentation available now.

Appendix B shows the CLP(F) code used to model the n-tanks problem for n = 4.

This code is discussed in detail in Chapter 6.

1.6 Overview of Thesis

This section is a overview of the thesis, provided as both a short piece which one

could read to get an idea of what this thesis covers, and an outline of the work to

guide the reader of the whole work.

The major innovation in this thesis is a principle that rigor is necessary, and the

use of clip to provide that rigor.

The principle underlying this work is that studies of safety critical systems must

be as rigorous as possible. From this comes the requirement to bound all measure-

ments, parameters, and behaviours which can not be known exactly, as well as errors

introduced by calculations. The innovation in this thesis is to use CLP (Constraint
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Logic Programming) and interval arithmetic together to model hybrid systems rigor-

ously. Clip is a CLP language over functions on real intervals to use in this modeling.

Using clip allows one to use a single technique to rigorously model all of the main

sources of preventable error.

The sources of error which are bounded by clip include roundoff error from work-

ing with floating point numbers, tolerances in the building of equipment, error bars

in sensor’s measurements, uncertainty about the ODEs (Ordinary Differential Equa-

tions) used to describe the system, and poorly understood behaviour near boundary

conditions.

Constraints are a natural technique to use when working with hybrid systems,

both because safety properties are clearly expressed as constraints, and because the

use of constraints allows one to rigorously model uncertainties in the system. In-

terval arithmetic fits naturally with CLP because an interval is essentially a pair

of constraints, one constraint providing an upper bound, and the other constraint

providing a lower bound. Interval arithmetic is a good choice for modeling physical

systems because intervals are a natural way to describe measurements.

Much of the time, we use intervals implicitly. All of the parameters that we

calculate with are implemented as intervals. Most of the time, our calculations look

like a standard ODE calculation, but clip automatically uses intervals for all the

parameters as well as for the coefficients in the Taylor expansions it uses to describe

functions. In small areas where one can not use ODEs as a model (perhaps because

the ODEs are non-analytic at some point, or near a boundary where the physics is

poorly understood), we simply constrain values to be within a “box” chosen to be a

reasonably small area in which we can be sure that the true value lies. This allows us
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to provide a rigorous analysis even where we can not rigorously use normal methods.

A nice feature of CLP languages is that they allow the user to specify any of the

variables and have the system calculate constraints on the remaining variables. This

means that the same program allows one to ask both “With these parameters what

state will the program be in at time t?” and “What parameters are required for the

program to be in state s at time t?” by simply plugging in different variables.
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Chapter 2

Hybrid Systems
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12 CHAPTER 2. HYBRID SYSTEMS

A hybrid system is defined as a system composed of a digital part (typically a

small computer) and an analog part (typically a physical system with sensors and

actuators). All computer controlled or monitored processes in the real world are

hybrid systems. As a field of study, “Hybrid Systems” has come to include the study

of the analog part of a system in an area where reliability is at a premium, typically

because of the cost (in lives or money) of a failure of such a system. Some hybrid

systems papers study only the analysis of the analog part of a system. Hybrid systems

research grew out of real time computation, control theory, and program verification

in order to prove properties such as stability about complex safety critical systems.

The field of hybrid systems is the study of systems in which discrete events and

continuous dynamic events interact. In the chemical engineering literature, hybrid

systems are sometimes called “combined discrete/continuous processes”.

The history of hybrid systems starts with Fahrland’s 1970 paper [Fah70] which

asked “Why limit the modeling to either discrete event or continuous when situations

are evolving that require more interdisciplinary solutions”. Very little was done for

the next twenty years, and Fahrland’s work is rarely cited. Fahrland may have been

influenced by Roger Brockett who was also at Case Institute of Technology, and who

later did some seminal work on hybrid systems. The first conference on the subject

was the 1991 REX workshop titled Real Time: Theory in Practice [dBHdRR91] where

the term “hybrid automata” was introduced. Since that time, real time systems and

hybrid systems work has diverged, with real time work focusing more on the computer

with its latency issues, and hybrid systems focusing more on accurate modeling of the

analog part of the system. While it’s not clear how to put a real time model (explicit

limits on the time for processing) in the standard formalism for hybrid automata, the
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techniques introduced in this thesis can easily model digital components as long as

their latency can be specified.

A hybrid automaton [ACH+95, HHWT97, HHMWT00, Hen96, LSVW99, LSV01]

is a formal model of a hybrid system. Most hybrid automata models are expanded

finite state automata with two different forms of state transition. The first (a “jump”

transition), is the standard state transition in a finite state automata, which takes zero

time, and changes the state of the digital part of the system. The second (a “flow”

transition), is the change in the analog part of the system over time, corresponding to

the physical process occurring. There are many versions of hybrid automata, which

differ in what they can model. Some earlier models required that the flow transitions

be piece-wise linear. Many later models allow flow transitions described by ODEs

(Ordinary Differential Equations), sometimes limited to linear ODEs.

There has been considerable research on developing formal models of hybrid

systems. Among others, Davoren and Nerode developed logics [DN00], Maler et

al. [MMP91], Lynch et al. [LSVW99, LSV01], Henzinger et al. [Hen96], and Alur et

al. [ACH+95] developed formal models. From our point of view, a limitation of these

models is the difficulty in applying them to real systems, and the amount of overhead

that must be relied on to trust the results.

Another major research push has been in the development of practical tools

for modeling and analyzing realistic hybrid systems. For example, Kowalewski et

al. [KSF+99] describe eight such systems (Matlab, Simulink, gPROMS, Shift, Dy-

mola, BASIP, SMV, HyTech) that can be applied to model and/or analyze fairly

complex hybrid systems. All of these systems sacrifice some degree of rigor in order

to handle moderately complex hybrid systems. For example, HyTech does not allow
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the physical system to be governed by ODEs (Ordinary Differential Equations), the

other systems that do allow ODEs use some form of approximation that introduces

errors which are then ignored. The simulation based systems rely on the user to

correctly identify the worst case when there is a non-deterministic choice.

An important use of hybrid systems is to prove “safety properties”, which are

statements of the form “the water level in this tank never exceeds some value”. Be-

cause safety properties are constraints, they fit naturally in a CLP approach.

2.1 Compendium

In this section I try to give a flavor of the current state of the art by listing at some

examples used in Hybrid Computing papers (and a few examples used in real-time

systems as hybrid automata were being developed).

• Cat and Mouse problem A trivial problem used pedagogically (Proposed at

REX workshop [dBHdRR91]) [Woo91] using Z; [MMP91] [NOSY93] In a 1-

dimensional model, a mouse starts running to its hole, and at a time ∆ later,

the cat starts chasing the mouse (starting from the same position). Both animals

run at constant velocity. Does the cat catch the mouse? (It is possible for the

answer to be indeterminate due to the granularity of time, or to the error-bars

in the problem description.) Maler et al.[MMP91] use the following notation:

The mouse’s velocity is Vm, the cat’s velocity Vc, the hole is distance X0 from

the start position. The cat’s position is xc and the mouse’s position is xm. If

at some time, xc = xm > 0, the cat wins. If xm = 0 before the cat wins, the

mouse wins.
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• Communications Time Out [HMP91]

• Traffic Lights [HMP91]

• Two Tanks — Kowalewski et al.[KSF+99] use 6 methods to model a fluid flow

problem previously studied by Stursberg et al. [SKHP97] also used by Henzinger

et al. [HHMWT00]

• Simple thermostat [ACHH93] - possibly from [NSY91]

• Thermostat with delay[HHMWT00] - This system is discussed in Chapter 4.2

• Water level monitor [ACHH93]

• Complex Thermostat [NOSY93] This version cools a reactor, using control rods

which cause cooling, with a constraint on the minimum time between moves of

each rod.

• Hot water heater (bathroom boiler) Ciarlini et al. [CF00]

• Billiards [NOSY93]

• timing based mutex with skewed clocks [ACHH93]

• leaking gas burner [ACHH93] (problem comes from Chaochen, Hoare, and Ravn

- A calculus of durations, IFIP, 1991)

• Lots of different models of air traffic avoidance - Henzinger et al. [HHMWT00]

• Idle speed control of auto engine Balluchi et al. [BBB+00]

• Many biological systems [BFH+04, Neo04, LT04]
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2.2 History

2.2.1 Pre-History

Nicollin and Sifakis [NS91] wrote an early survey of timed systems, which they admit

is both incomplete and biased, but provides a basis for understanding the later work.

Real time computing has been around since the 1960s. The specification for

a real-time system typically stated that any interrupt would be handled in some

specified time. Hybrid automata come out of the real time computing work. Earlier

models include Lamport’s temporal logic of actions[Lam94], and Milner’s CCS[Mil80]

(Calculus of Communicating Systems). Various Temporal logics were used to describe

what are now called hybrid systems. CCS was mainly used for describing distributed

computing (with no analog component, and often with no time constraints.)

Much of the groundwork for Hybrid systems was laid at a REX (Research and

Education in Concurrent Systems) workshop held in the Netherlands in June, 1991.

The proceedings were published [dBHdRR91]. This led to a series of hybrid system

conferences [GNRR93, AKNS95, AHS96, AKNS97, AKL+99] which were followed by

a series of “Hybrid Systems: Computation and Control conferences” [SH98, VvS99,

LK00, BSV01, TG02, MP03, AP04]

Maler et al.[MMP91] consider time only through an “age” function, which is the

length of the time interval since the most recent change in the continuous state.

While timed systems using temporal logic [Lam94, AL91] assumed that all actions

were instantaneous, Maler et al. introduced the now standard model of hybrid au-

tomata with some (continuous) actions taking non-zero amounts of time, while digital

state changes still took zero time. This was the first model which considered con-
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tinuous changes rather than instantaneous changes occurring after a specified delay.

Essentially, the older model allowed one continuous variable, time, while the newer

model allows an arbitrary number of continuous variables. By modeling continuous

changes, it makes it possible to describe what actually happens in the system, rather

than worst case descriptions assuming that every transition happens at the latest

legal time.

Berber [BL91] introduced Communicating Shared Resources, which uses a process

algebra. They were sometimes called “Reactive Systems” [HG91].

Lynch and Tuttle introduced Input/Output Automata [LT88], which are precur-

sors to Hybrid I/O automata [LSVW99]. Dolginova and Lynch [DL97] use these

Hybrid I/O automata to model platoon join maneuvers in intelligent highway sys-

tems.

[HMP91] use what might be called a hybrid automata to model a simple timeout

and a set of traffic lights.

Lynch and Vaandrager [LV91] want general formal model for real-time systems

that generalizes the work of Lynch and Attiya [LA90]. They introduced “timed

automaton”, an automaton with a (real-valued) absolute time for each state. Rather

than putting fairness or liveness properties explicitly in the system, they model them

using safety properties.

The Oxford Timed CSP Group has enhanced Hoare’s CSP (Communicating Se-

quential Processes) [Hoa85] by adding timing[SDJ+91]. CSP is designed to describe

several systems which may at times have to wait for one another. Events occur

instantaneously, but one can specify one event to happen at a specific delay after

another event. When more than one process can move, it is non-deterministic which
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one takes a step. Timed CSP appears well suited to modeling communications sys-

tems. Despite the apparent mis-match between distributed computing and modeling

analog systems and the complexity of the notation, Timed CSP has been used to

model an impressive set of problems: Telephony switches, Aircraft (turbine) engine

starter, automotive guided vehicle, ethernet link protocol, lab robot, and a flexible

manufacturing system.

Ciarlini and Frühwirth [CF00] automatically translate formal models of hybrid

automata (using first order temporal logic) by a CLP program to get test specifica-

tions.

Timed Automata

Timed Automata are an earlier model for describing real time systems introduced

by Alur and Dill in 1991 [AD91]. Timed Automata are a formal model which allow

one to describe time between events very precisely. Except for the requirement that

the system be described by a finite automaton, they are clearly powerful enough to

describe the crucial issues in real time computing.

The main thing lacking in Timed Automata is a model of the continuous part of

the system. The only continuous variable is a clock.

2.2.2 Hybrid Systems

Fahrland [Fah70] introduced the idea of hybrid systems (which he called “Combined

Simulation”) in 1970. Very little was published for the next 20 years. The first use

I can find of the term Hybrid Automata describing a particular system is in Alur

et al. [ACHH93] (which only allows linear continuous functions) which appeared in
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the first workshop on the theory of Hybrid Systems [GNRR93] held in late 1992,

though the term hybrid system was coming into use in the REX workshop in 1991

[dBHdRR91]. Nicollin et al.[NOSY93] define a similar model for hybrid systems where

each step consists of a flow transition followed by a jump transition.

Recent work on hybrid systems includes defining models [LSVW99] – cited above

[LSV01] [ACH+95] [MMP91] – cited above [GJS96] and calculating the behaviour of

the analog parts [HHMWT00]. – cited above

The Intelligent Highway Group at Berkeley has developed the SHIFT program-

ming language [DGS] for describing evolving hybrid systems. [Mos99] provides a

survey of a dozen simulation packages describing how much support each of them

provides for simulating hybrid systems.

John Lygeros introduced the game theoretic approach to hybrid systems in his

thesis.[LGS96] He has continued work on this approach [TLS00].

2.3 CLP Approaches to Hybrid Systems

We are not the first to use constraint logic programming to model and analyze hybrid

systems. Gupta et al. [GJSB95, GJS96] introduced a ground breaking approach called

“hybrid cc” which allowed one to formally describe hybrid systems using a logic pro-

gramming language with constraints. Urbina [Urb96] has pioneered another approach

using CLP(R)[JMSY92] to model and analyze hybrid systems. Delzanno and Podel-

ski [DP99, DP01] have explored analyzing hybrid systems using CLP(Q,R) [Hol95],

a system which handles linear constraints with real and/or rational coefficients, as

well as Boolean constraints. Their approach is to define a translator from Shankar’s
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guarded command language [Sha93] to CLP(Q,R).

2.4 Intervals Approaches to Hybrid Systems

We are not the first to apply interval arithmetic techniques to the problem of rigor-

ously modeling hybrid systems. HyperTech [HHMWT00] take a major step towards

reliability of their results by using interval arithmetic ODE solving as a tool to add

rigor to the very successful HyTech system. This system merges, for the first time, the

rigor of the formal model approaches and the practicality of the more engineering-

based approaches by employing validated ODE solving. Our approach has several

advantages over earlier models:

• CLP(F) is declarative, so that it describes system being modeled directly

• CLP(F) is logic based, so it can be viewed directly as a theorem prover using

CLP logic

• CLP(F) is constraint based. It doesn’t require one to fully specify a system.

CLP(F) allows one to understand some properties of a system based on initial

assumptions.
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This chapter provides a background for the rest of the thesis by describing the

three main technologies underlying our analysis of hybrid systems. None of the work

described here is mine, this chapter is here purely to provide background. The first

technology is interval arithmetic, which was introduced by Moore in 1966 [Moo66].

The second is constraint logic programming (CLP) which was introduced by Jaffar

and Lassez in 1987 [JL87]. The third is CLP(F), an implementation of Constraint

Logic Programming with function variables and constraints, introduced by Hickey in

1994 [Hic94] and more fully described in 2000 [Hic00a]. CLP fits well with interval

arithmetic, as constraints are a sensible way to describe an interval (with the inter-

val’s maximum and minimum each corresponding to a constraint), and CLP(F) takes

advantage of this natural fit by combining CLP and interval arithmetic in a single

elegant system.

The idea behind interval arithmetic is to express every real value X as an interval

x = [xmin, xmax] with xmin ≤ xmax. In CLP(F), the endpoints xmin and xmax are

floating point numbers. If xmin = xmax it is a legal interval, and represents an X

which is a floating point number. The interval x is chosen such that one can prove

that the true value of X lies in the interval x. This allows us to deal rigorously with

rounding errors in calculations and error bars in measurement. Section 3.1 provides

an in depth discussion of interval arithmetic.

CLP [JM94] is a programming technique where possible answers are limited by

sets of constraints. The program proceeds by using the set of constraints currently

known to try to further constrain the set of possible answers. When the set of possible

answers can no longer be shrunk, the program terminates. It is important to note

that CLP does not necessarily provide a solution to the set of constraints, it merely
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provides a description of where any solutions must lie. Section 3.2 provides more

details about CLP.

CLP(F) is an extension of CLP which allows one to specify constraints about

functions (such as their derivatives, ranges, and values at specific points) as well as

specifying constraints about real variables. This gives one the ability to describe

ODEs, which is vital for almost any non-trivial hybrid system. Section 3.4 describes

CLP(F) in more detail.

Interval arithmetic is an obvious choice for modeling hybrid systems, as the in-

terface between the analog and the digital part involves imperfect hardware whose

description must include error bars. Intervals are a very clear way of explicitly ex-

pressing error bars. Because CLP(F) provides constraints on the range of values

that each variable can take on, it is well suited to describing intervals and its logical

semantics makes it ideal for proving safety properties.

3.1 Interval Arithmetic

3.1.1 Problems with Floating Point Arithmetic

In order to be rigorous in our descriptions of hybrid systems, we must have accurate

computation. Floating point numbers1 introduce some problems with accuracy.

The standard method of describing non-integer numbers on a computer is to

use a finite set of floating point numbers to model an infinite set of real numbers.

This method has many problems, all stemming from the properties of floating point

1David Goldberg has written a useful tutorial [Gol91] on floating point arithmetic, and David
Priest [Pri97] a helpful addendum showing how even implementations which conform to IEEE-754
can give different results for the same program.
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numbers. The fundamental problem with floating point (FP) numbers is that they

do not fit well with the number systems mathematicians favor (Reals, Rationals,

Integers). FP is a proper subset of Q, but FP is incomparable with Z.

Operations on floating point numbers [Kah96] do not have the nice properties

(associative, distributive ...) that we learned in third grade that all numbers have.

FP is not closed under multiplication or addition, let alone division and subtraction.

The lack of closure means that division is not the inverse operation to multiplication,

and subtraction is not the inverse operation to addition. This introduces a class of

round-off errors in which operations which are mathematically equivalent over the

Reals give different results over FP.

Even with integers expressed in FP notation, we run into problems. Consider a

large integer L, say 10000000000000000 and a small integer S, say 1. L is chosen to

be larger than the FP mantissa, but smaller than the largest value representable in

FP. Then (S + L) − L is equal to S, but if calculated in FP, the result will be zero.

Using FP to compute S + (L − L) will correctly yield S. The correct choice of order

of operations can help, but it is often not obvious in advance which order will yield

the result which is closest to the correct value.

Even testing for equality correctly in floating point numbers is tricky, as two

different (real) values may map to the same FP number, and, in the other direction,

two values which should be the same may have been rounded differently because of

a different order of operations.

These problems are not purely theoretical. There is a significant collection of ex-

amples where using limited precision calculation results in huge errors, and a few cases

where one gets the same wrong answer even as one uses higher precision arithmetic.
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Some examples follow:

Edalat and Heckmann [Eda01] give the following pathological example, which they

attribute to Jean-Michel Muller:

a0 =
11

2
, a1 =

61

11
, An+1 = 111 −

1130 − 3000
an−1

an

Let a(k)
n be an computed with k decimal digits of precision (They used the Unix

program bc which allows one to specify the number of decimal digits of precision to

be used in a calculation). They compute with five decimal digits of precision, to get

a sequence which appears to converge to 100.

a(5)
0 5.500

a(5)
1 5.545

a(5)
2 5.590

a(5)
3 5.632

a(5)
4 5.648

a(5)
5 5.242

a(5)
6 −3.241

a(5)
7 283.1

a(5)
8 103.738

a(5)
9 100.209

a(5)
10 100.012

a(5)
11 100.001

At this point, one might feel confident that the sequence has converged, but just

to make sure, they calculate a100 to higher and higher precision:

a(5)
100 100 + 10−5

a(30)
100 100 + 10−30

a(60)
100 100 + 10−57

a(100)
100 100 + 10−17

a(110)
100 100 + 10−7

a(120)
100 −3.790

a(130)
100 6 − 10−8

a(140)
100 6 − 10−8

After looking at the calculation with 60 digits of precision, one could justifiably

feel quite confident that the sequence has a limit of 100. The calculations at 100

and 110 digits of precision (where the values are still close to 100, but not quite as

close) are somewhat worrisome, but one is still startled by the values with 120 and

130 digits of precision. In fact, the correct answer is 6, not 100.

In addition to pathological cases, there are documented cases of normal prob-

lems surprisingly giving severely incorrect results. Günther-Jürgens, Endebrock, and
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Klatte [GJEK87] give one such example, which resulted when a user doing statistical

calculations involving multiple linear regression re-did some calculations on a differ-

ent computer and got a different result. His variable RESI which represented the sum

of squares for a least squares fit was 5.04 on one machine, and 10.01 on the other.

It turned out that the machines had the same floating point hardware, but different

versions of the FORTRAN compiler. The local computer consultants were interested,

and reduced the problem to a few operations on a 5 X 5 matrix. From that, they

produced the results in Table 3.1 showing different results from the same calculation

on two different models of CDC CYBER computer and several different compilers.

The “R” notation is a change in rounding mode which they don’t define further.

CYBER Compiler Result
172 FTN 4.6 33.11
172 FTN 4.6 (R) 6.64
172 MNF 20.44
172 M77 20.44
76 MNF 15.22
76 FTN 4.8 33.11
76 FTN 4.8 (R) 2.09
76 FTN5 23.67
76 FTN5 (R) 2.60
76 FTNN5 (R=0) 42.51
76 M77 (R) 15.22

Table 3.1: Single Precision Results for RESI (from Günther-Jürgens et al. [GJEK87])

They then ran the same calculation on different computers with both single and

double precision floating point, and get the results in Figure 3.2. The “DM” column

shows the number of digits in the mantissa2 of floating point representation. The “V”

column gives the number of correct digits for the double precision calculations (The
2Recent work uses the term “significand” instead of mantissa.
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correct value was calculated later by other means).

Single Precision Double Precision
Computer DM Result DM Result V
Fujitsu VP200 56 10.425 112 10.626840483201 11
CDC Cyber 170 48 [1.4388, 42.514] 96 10.626840483200 11
CDC Cyber 180 48 1.1149 96 10.626840482649 10
Cray-1M 48 7.7812 96 10.626840482649 10
CDC CYBER 205 47 213.76 94 10.626840484621 10
CGK TR440 38 45149. 84 10.626839084364 6
ICL 1906S 37 -140.49 74 10.626839287645 6
Sperry 1100 27 [25299, 3668400] 60 10.627052877666 4
IBM 3032 24 [-84223, 151810] 56 10.589253698243 2
NCR DM V 24 -9617700 52 10.377879736013 2
Prime 250 24 26809000 48 54.408453452592 0
Siemens 7.536 24 -84223 56 10.627538120607 4
DEC PDP-11 23 11824000 55 10.626978262677 5

Table 3.2: RESI Results for Different Computers (from Günther-Jürgens et
al. [GJEK87])

Note that in single precision calculations, results varied greatly. Since the calcu-

lation was a sum of squares of errors, negative values are theoretically impossible.

Often people reasonably assume that a commercial software package will allow

them to use statistics without becoming a statistics expert. So they then tried a

number of commercial software packages using single precision arithmetic, and got

the results in Table 3.3. This table shows that those hopes are often in vain.

The original user had checked that the matrix had a non-zero determinant, but

did not realize that he should check for a large condition number. A naive user could

well not be aware that calculations on matrices with large condition numbers are

prone to large error.

A correct answer was found both by using an interval technique on the original
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Package RESI

NAG-Library (G02CJF, CYBER 76) 627.35
SPSS (New Regression, CYBER 76) 108.65
SPSS (Nonlinear, CYBER 76) 10.63
BMDP (BMDPlR, CYBER 76) 197.07
BMDP (BMDPAR, CYBER 76) 206.03
GLIM (DEC VAX) 10.63

Table 3.3: Standard Software calculations of RESI (from Günther-Jürgens et
al. [GJEK87])

problem, and by transforming the problem into an equivalent matrix with a reasonable

condition number.

It is impossible to know how often users fall into such traps, as one only learns

of the rare cases in which the error is found, and the person involved is willing to

accept the embarrassment of pointing this out. From the wildly different answers the

statistical packages gave, one might guess that this is a common problem.

Acton’s book [Act96] on pitfalls of computing with floating point numbers contains

numerous examples of computations where one can easily get very large roundoff

errors.

There are several approaches to the problems of doing arithmetic on computers.

The most popular is to use floating point processors, and hope that the rounding

errors aren’t too large. This has the advantage of being very simple, but does not

inspire confidence. Another approach is numerical analysis [Neu01]. This is a rather

painstaking process, which must be redone for any significant change in the problem

being considered.

In the 1980s, there was work on adding features for scientific computation to var-

ious programming languages (see Kaucher, Kulisch, and Ullrich [KKU87] for several
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examples.)

Another source of errors is insufficiently exact data, which Mikhlin [Mik91] cate-

gorizes as “inevitable error”. Understanding this sort of error and how measurement

errors propagate to calculated values (often called “sensitivity analysis”) is a common

problem for scientists, to which Taylor [Tay97] devotes a book. Interval arithmetic

provides an automatic way of overestimating the errors in a final result stemming

from the errors in measurement.

We use interval arithmetic [Moo66] to make these errors explicit. Interval arith-

metic uses an interval (Xmin, Xmax) to represent each real number X. The true value

of X is within the interval representing X. Hickey, Ju, and van Emden [HJvE01]

have shown that by careful use of IEEE 754 floating point standard [IEE85] round-

ing directives, it is possible to soundly and efficiently perform arithmetic operations

on potentially unbounded intervals with floating point numbers as end points using

standard commercial floating point hardware.

Interval arithmetic can also be done without using floating point hardware. Edalat

and Heckmann [EH02] use “linear fractional transformations”, in which they use infi-

nite precision rationals as the end points of intervals, and calculate as much precision

as is needed. This is a sort of lazy evaluation. Possibly their system could be substi-

tuted for the sound ops library currently used in clip. sound ops is the C library for

interval arithmetic which clip uses.

3.1.2 Errors and blunders in scientific computing

In the seminal paper [vNG47] “Numerical Inverting of Matrices of High Order,” von

Neumann and Goldstine describe four sources of errors in scientific computing:
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1. Theory Errors – errors in the underlying scientific theory

2. Measurement Errors – errors in the observational data

3. Truncation Errors – errors due to approximation of solutions by algebraic ex-

pressions

4. Roundoff Errors – errors due to the fixed precision of computer arithmetic

These errors are inherent in physical science computations, but interval arithmetic

provides tools to lessen the damage caused by the last three of them. The last two are

due to the continuous nature of the problems we are trying to solve and the essentially

finite nature of digital computation. We start by describing how interval arithmetic

helps eliminate (or at least document) these errors.

1. Measurement Errors Because we do all our calculations on intervals, it is easy

to enter a measured value as an interval (or as a value with an error estimate.)

We then carry the calculations through allowing the measurement to take on

any value in the interval. This means that if a calculation is heavily dependent

on the precision of an imprecise measurement, the answer given will contain the

possible range of answers.

2. Truncation Errors The use of intervals allows us to use classical series approx-

imations, while still maintaining complete accuracy. We express the error term

at the end of the series as an interval, and carry that through our calculations.

If we were to truncate a series too soon, it would lead to an overly wide interval

in the answer.
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3. Roundoff Errors IEEE-754 [IEE85] provides control over rounding. By using

the ability to specify whether a value will be rounded up or rounded down, we

insure that our calculated intervals are a superset of the actual intervals.

There are obviously some important sources of error that are not on this list,

these are the “avoidable” errors or blunders, that arise from the mistakes made by

individuals involved in setting up the computation.

Some of the most common of these mistakes are:

1. Analysis Blunders – this occurs when the analyst makes a mistake in estimating

the errors introduced by his computational solution. Interval arithmetic usually

makes these errors explicit.

2. Algorithmic Blunders – these are the errors that arise when the idealized al-

gorithm proposed by the analyst does not correctly solve the mathematical

problem.

3. Programming Blunders – these are the errors that arise when the algorithm is

incorrectly implemented in a particular programming language. One can make

these less likely by making the language in which the problem is described

closely match the natural description of the problem. CLP(F) tries to do this

by making ODEs a part of the language.

4. Software-use Blunders – this covers the case of users who apply the software

in ways for which it was not intended, e.g., applying it with variables that are

outside of the range for which it was designed. The use of intervals helps to catch

this by giving wide result intervals in cases where the program is inaccurate.
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5. Hardware Blunders –these are the errors that arise when the hardware does not

implement the arithmetic operations according to the published specifications

(currently IEEE-754 [IEE85] is most widely used.) In this thesis, we will assume

that the underlying hardware correctly implements IEEE-754, but this is clearly

an area where formal verification is sorely needed.

In the everyday world of scientific computing, most of the practitioners are working

scientists and not numerical analysts. This significantly raises the likelihood of the

computed results being subject to one or more of these computational blunders.

Interval Arithmetic [AK93, AH83, HS81, Moo66, Neu90, JKDEW01, CW98, LvG00]

is one well-studied approach to handling some of these blunders. The idea behind this

method is to free the analyst from the difficulties of estimating the effects of roundoff,

measurement, and truncation errors by automatically computing an over-estimate of

the error for each variable in the model. This is done by representing each variable in

the mathematical model by a floating point interval (or a set of intervals) and defin-

ing all arithmetic operations and mathematical functions on these intervals in such a

way that the actual result of any primitive operation or function is guaranteed to be

contained in the computed result. Interval arithmetic is very old. Archimedes used an

interval technique to compute π by considering inscribed and circumscribed regular

polygons for a circle. There were a few papers in the 1920s and 1930s [Bur24, You31]

though it was not formalized until Moore’s [Moo66] work in the 1960s. Kearfott pro-

vides an excellent introduction to Intervals [Kea96]. Hayes [Hay03] provides a less

technical introduction.

Just because the error is automatically computed does not mean that the vast

literature of classical numerical analysis is not useful. Interval arithmetic algorithms
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are still subject to many of the same kinds of algorithmic errors that arise with

floating point computation, but rather than result in incorrect values, these blunders

typically result in wide intervals. For example, evaluating 1 − cos2(x) in floating

point arithmetic for x small, will result in a loss of about 2b bits of precision if x is

approximately 2−b. If the same expression is evaluated using interval arithmetic, one

gets an interval containing about 22b floating point numbers. Thus, interval arithmetic

introduces a new kind of problem as well as making an old one slightly worse:

• Precision Problem – this covers the case where the program is not able to

sufficiently narrow the result intervals.

• Performance Problem – this covers the case where the calculation requires an

unreasonably large amount of time.

When either of these problems is detected, the insights of classical numerical analysis

can then be used to suggest ways of restructuring the computation to increase the

interval convergence rate of the algorithm.

Interval Arithmetic techniques can be used by expert numerical analysts to pro-

duce software which adheres rigorously to the mathematical model and computes

result intervals which are guaranteed to contain the theoretical result values (barring

any blunders by the analyst). Interval arithmetic thus has brought numerical analysis

fully into the realm of pure mathematics for the first time, since one no longer needs

to rely on heuristic arguments about the statistical unimportance of the roundoff and

truncation errors.

The price for this mathematical rigor is that interval arithmetic routines often

take longer to provide an answer and always overestimate the error. Empirically it
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is noted that these overestimates are sometimes so large as to render the classical

algorithms useless (particularly iterative algorithms with many iterations). There

has been considerable effort in the last thirty years at developing interval arithmetic

algorithms which are not only mathematically correct, but are efficient and precise as

well [AK93, Boh96] . As promising as this recent work in interval analysis has been,

it does not address most of the common blunders in scientific computing and still

requires the working scientist to use tools for solving very specific types of numerical

problems or to write a solver in some standard language but using interval variables

rather than doubles or floats at certain places. This latter option does little to remove

many of the opportunities for blunders, and in some sense may aggravate this situation

since it requires scientists to be aware of the difference between interval variables and

numerical variables and when to use which.

3.2 Constraint Logic Programming

Constraint Language Programming (CLP) was introduced by Jaffar and Lassez [JL87]

in 1987, and further developed by Van Hentenryck in his thesis [vH89]. CLP grew out

of logic programming (see Lloyd’s book [Llo87] for information on logic programming).

Logic programming, in turn, grew out of automatic theorem proving and artificial

intelligence in the early 1970s. Jaffar and Maher [JM94] provide an excellent survey

of CLP systems and the history of CLP.

CLP essentially adds an algebra to Prolog. If H is an algebra of terms, CLP(H)

corresponds to Prolog. CLP(R) [JMSY92] was an early attempt to add the algebra of

real numbers to prolog, but because floating point numbers are a poor approximation
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of the reals, rounding errors can cause their usual problems and the logical semantics

of a CLP are violated. There have been other systems which added the algebra of

numbers to CLP, but most of them suffer from the same problem with floating points

poorly representing reals.

An annual conference on “Principles and Practice of Constraint Programming”

has been held since 1995 [MR95, Fre96, Smo97, MP98, Jaf99, Dec00, Wal01, Hen02,

Ros03]. Many of the workers in constraint programming approached it as a way of

dealing with questions in artificial intelligence.

3.3 Interval Arithmetic Constraints

The key idea behind interval arithmetic constraints [BO97, Ju98, Cle87, Hic94, OV93,

HvEW98, Hyv89, vE97a, vE97b, Ben95, BMvH94, vHMD97, Res88, vHMB98] is to

view numeric computing problems as constraint systems that relate a set of real (or

complex) variables or functions. The variables whose values are to be computed are

initially unbounded in this model (i.e., they have the value [−∞, ∞]). The goal of the

computation is to shrink the intervals of the variables in such a way that no solution to

the original system is removed. The shrinking is done by iteratively applying various

contraction operators which are automatically generated from the constraint set.

There are several interval arithmetic constraint solvers which are currently avail-

able. In all of these the user specifies only the constraints to be solved and the system

determines which contractors to apply and in which order.

For example, in IAsolver [HQvE00], the constraints are compiled into a set of

primitive constraints (much the same as 3-address code is generated from expres-



36 CHAPTER 3. OVERVIEW OF TOOLS USED

sions by a compiler), and contractors for these primitive constraints are repeatedly

called until a fixed point is reached or some resource bound is exceeded. Note that

since IEEE floating point has a successor function, there are only a finite number of

contractions which can take place before a fixed point is reached.

The Numerica system [vHMD97] uses interval arithmetic techniques to solve non-

linear optimization problems with a relatively small number of constraints and vari-

ables. This system uses three types of contractors, one of which is the multi-variable

interval Newton contraction, and also relies on domain-splitting to search for solu-

tions.

These two systems share the property that the choice of contractors and the

strategy in which they are selected is hidden from the user. Thus, if the user correctly

enters the mathematical formulas describing the problem to be solved, then the system

will produce intervals which are guaranteed to contain the correct solution.

There are also several Constraint Logic Programming languages which provide

general non-linear interval arithmetic constraint solving. In CLP(RI) [Sys96], for

example, a constraint is specified by a standard mathematical expression enclosed in

curly braces. In CLP(F) [Hic94, Hic00a], the constraint language is extended to allow

for differentiable functions and ODE constraints.

This scheme eliminates all possible blunders except for misuse of the software.

It does still allow precision problems (i.e. the resulting intervals being unnecessarily

large) and performance problems. The price of such protection is that the user plays

no role in formulating the algorithm to solve the problem, and if the system is not able

to sufficiently narrow the intervals quickly enough the user has few if any alternatives.
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3.4 CLP(F)

CLIP [Hic00b, HJ] is an implementation of a CLP language whose domain is the

reals, and which was first built on SICStus Prolog [CWA+91] by Hickey and Ju, and

later ported to GNU Prolog [Dia02]. CLIP implements CLP(I) and CLP(F). CLP(I)

is a constraint language over the reals. CLP(F) extends CLP(I) to allow constraints

which specify arithmetic and analytic relations among real and functional variables.

Hickey provides a description of the language CLP(F) in [Hic01]. CLIP is open source

software, available at interval.sourceforge.net

Earlier CLP(Intervals) systems include Benhamou, McAllester and Van Hen-

tenryck’s [BMvH94] work on Newton , and Benhamou Older [BO97] and Benah-

mou’s [Ben95], work on CLP(BNR).

DeVille et al. [DJvH02] explore a technique for minimizing the size of intervals

resulting from solving ODEs using constraints and intervals. As they point out,

their techniques would fit well with CLP(F), and might improve the performance of

CLP(F).

CLP(F) is related to QSIM [Kui93] in that each attempts to find an over approx-

imation of the possible states of a system of ODEs (QSIM uses the term “qualitative

behaviours”) .

At this time, there is very little documentation of CLP(F). There are some de-

scriptions in Hickey’s papers [Hic01, Hic00a], and there is a manual in early draft

form [WH04], which appears as appendix A of this thesis. In this section, we provide

an overview of CLP(F), its semantics, its implementation, and its use.
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3.4.1 CLP(F) Constructs

CLP(F) is a superset of Prolog [Pro95, DEDC96], and uses Prolog’s syntax and user

interface. As is common in CLP languages, the constraints are enclosed in curly

braces “{ }”. The different types of variables are declared using the type predicate.

Constraints over functions are enclosed in “{[ ]}”. The CLP(F) interpreter provides

answers to queries in the form of a sequence of solution sets, where each solution set

provides a real interval for each of the constraint variables. The soundness property

of CLP implies that every correct solution to the query must be contained in one of

the solution sets (assuming that the program eventually terminates). On the other

hand, not every element of the solution set is guaranteed to be a solution (and indeed,

there may not be any actual solutions in any particular solution set returned by the

interpreter).

Rigorous Numeric Constraint Solving

The CLP(F) constraint language allows one to express queries about real variables

and analytic functions over a finite interval of the reals, using any equations and in-

equalities constructed using the arithmetic operators and the standard mathematical

functions (sin, cos, tan, asin, acos, atan, exp, log, exponentiation, integral powers

XY , and others). For example, given the query:

| ?- {X^2=2,X>0}.

CLP(F) responds

X = 1.41421356237309... ? ;

no
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| ?-

The ellipsis indicates that all the digits shown are correct.

Multiple Solutions and Non-determinism

Sometimes there may be more than one solution to a given constraint. In this case

the simple solver returns a single interval that contains all solutions:

| ?- {X^2=2}.

X = [-1.41421356237309536751922678377,

1.41421356237309536751922678377] ?

no

| ?-

The user must guess whether this is because the system has failed to narrow the

interval around one solution or if this is a case where there are multiple solutions.

There is a moderately sophisticated solver solve clip(METHOD,VARS,N) which allows

one to specify the solving method, (See section A.7.1 for a list of supported solving

methods, and a description of each of them.) the list of variables that should be solved,

and a parameter N representing how much work should be done (e.g. a maximum

allowed width for intervals, or a maximum depth for a divide and conquer splitting

routine). In earlier work [HW99a, HW99b] we discuss methods of determining which

is the case, and choosing an appropriate method to use in solve clip.

Here, to find the discrete set of solutions one must explicitly apply a divide-and-

conquer approach where one divides the interval into subintervals and searches for

solutions in each one. This is done using the “queue” method of the solve clip

solver and typing a semicolon after each solution that it finds:
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| ?- {X^2=2},solve_clip(queue,[X],0.000001).

X = 1.41421356237309... ? ;

X = -1.41421356237309... ?

(10 ms) no

| ?-

The “no” at the end indicates that there are no more solutions to that query.

If the result returned by CLP(F) is too wide an interval, one can adjust tuning

parameters which control how many attempts at narrowing clip will make. These

parameters offer a complex trade-off between speed and precision. The tuning pa-

rameters are discussed in section A.7.1.

3.4.2 Analytic Constraints and ODEs in CLP(F)

In CLP(F) the constraint domain allows one to declare variables representing various

analytic values including:

• real numbers, X

• infinitely differentiable functions, F, on a finite interval [a,b]

• vectors of numbers, functions, or, recursively, vectors

CLP(F) also allows one to constrain functions and real variables by equations

involving derivatives and arithmetic, trigonometric, or exponential functions. In ad-

dition, one can constrain a function to take specific values at specific points and to

have a range that lies within an interval. See Appendix A for a precise description of

the constraint language
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Consider the following mathematical constraint Q on the function variable F and

real variables A and E:

Q(F,A,E) ≡

(F ∈ H([0, 1]), F ′ = F, F ([0, 1]) ⊆ [−1000, 1000], F (0) = 1, F (A) = 2, F (1) = E)

Q can be represented and solved by presenting the following constraint to the CLP(F)

interpreter:

| ?- set_clip(sensitivity, 0.0).

| ?- type([F],function(0,1)), {[ ddt(F,1)=F, F in [-1000,1000],

eval(F,0)=1,eval(F,A)=2, eval(F,1)=E ]}.

where the type predicate indicates that F ∈ H([0, 1]), i.e., F is an infinitely dif-

ferentiable function in some open neighborhood of the interval [0, 1]. The set clip

command is used to tune CLP(F) by controlling under what conditions it puts a

changed constraint back on the stack. This enables the user to trade off computation

time against the precision of the result. See section A.7.1 for a list of tuning variables

and their meanings. The logical interpretation of the code is discussed in the next

section.

The output given by CLP(F) after 0.1 seconds is

A = .6931471... E = 2.718281...
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which represents the following answer constraint:

C(F,A,E) ≡ (A ∈ [0.6931471, 0.6931472) ∧ E ∈ [2.718281, 2.718282))

The soundness of the CLP(F) interpreter implies that it has proven a theorem about

the query and its solution constraint:

∀F,A,E Q(F,A,E) ⇒ C(F,A,E)

In other words, if F , A, and E represent a solution to Q, then they must satisfy the

answer constraint C. Note that one cannot infer from this theorem that Q has any

solutions at all. In this particular case, Q clearly does have a solution

F (t) = exp(t), A = ln(2), E = e

which of course satisfies the answer constraint C.

3.4.3 How CLIP Works

The CLP(F) system solves analytic constraints by soundly approximating analytic

functions using power series and introducing arithmetic constraints among the Taylor

coefficients of the functions at the endpoints, at points in the interval, and over the

entire range. Since CLP(F) represents functions as Taylor series, it can easily calculate

derivatives of functions, and enforce constraints on those derivatives. Since CLP(F)

includes the remainder term in Taylor series, it can be (and is) rigorous.

Consider again the constraint that specifies that F is a function on [0, 1] such that
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F ′ = F and F (0) = 1 and F (A) = 2 and F (1) = E and F ([0, 1]) ⊂ [−1000, 1000]:

| ?- type([F],function(0,1)), {[ ddt(F,1)=F, F in [-1000,1000]

eval(F,0)=1, eval(F,A)=2, eval(F,1)=E ]}.

The type predicate is used to declare that F is an infinitely differentiable function

on the interval [0, 1]. Thus F is represented by a list of its Taylor coefficients at 0

(F00, F01, F02, .., F0n) and at 1 (F10, F11, ...) and the ranges of its derivatives over [0, 1]

(R0, R1, ...), related by the Taylor formula with remainder. The function F is then

constrained to be equal to its first derivative (i.e. Fij = Fi,j+1, Ri = Ri+1, and to take

the value 1 at 0 (F00 = 1) and to take values in [−1000, 1000] for all x ∈ [0, 1] (i.e. R0 ⊆

[−1000, 1000]). The variables A and E are not declared to be functions and hence are

real constants by default. They are constrained so that F (A) = 2 and F (1) = E (e.g.

F10 = E and for each n = 1, 2, . . ., 2 = F00 + F01A + F02A2/2! + . . . + ZnAn/n! for

some Zn ∈ Rn). The constraint solver finds A and E to 7 decimal digits of precision

and also finds an interval for F (not shown here) and specifies intervals Fij for its first

10 derivatives at 0 and 1, and intervals Rj for the range of its first 10 derivatives over

[0, 1]. The number of derivatives (10) can be set to any value N (but space and time

complexity grows quadratically with N). One can use CLP(F) to define higher order

constraints which specify that two points lie on a trajectory defined by on ODE.

Hickey [Hic00a] provides a more thorough description of CLP(F).

3.4.4 Programs

CLP(F) programs are Prolog programs in which the bodies of rules may contain

CLP(F) constraints. CLP(F) provides the full power of Prolog in addition to the
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power of the underlying constraint solver and both are combined within a single logical

semantics. Moreover, by the soundness and completeness of CLP semantics [JM94],

if a CLP interpreter returns N solution sets C1, . . . , Cn for a query Q(X,F ) and then

halts, then every solution of the query Q(X,F ) consisting of a real vector X and a

vector F of real-valued functions, is contained in the union of the solution sets Ci.

The logical semantics of CLP(F) programs can be summarized in the following

theorem [Hic00a].

Theorem 1 Let P be a CLP(F) program, Q(x) a CLP(F) query where x is a tuple of

real variables, and assume the interpreter returns N answer constraints {x ∈ Ij} for

tuples of intervals I1, . . . , IN and then halts. Let P ∗ be the first order theory obtained

from a logic reading of P (by Clark’s Completion Semantics [Cla78][Llo87]), and let

T be the first order theory of the domain F of analytic functions on real intervals.

Then one can infer that

P ∗ ∪ T - ∀x

(
Q(x) ⇒ x ∈

⋃

j

Ij

)

Corollary 1 Notation as in the previous theorem. If the interpreter halts with no

answer constraints (i.e., N=0), then one can infer

P ∗ ∪ T - ¬∃x Q(x)

i.e., the query is not satisfiable.

This theorem allows one to infer correctness of a CLP(F) simulator for a hybrid

system as well as safety properties of the system directly from the corresponding



3.4. CLP(F) 45

CLP(F) program.
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We model hybrid systems using CLP(F) programs with parameterized ODE con-

straints. The parameters change both in response to physical changes (such as a water

level crossing from above a pipe to below it), and state transitions of the digital part

of the system (such as some element being turned on). This method of using the

same modeling technique for what seem to be two distinct sorts of events simplifies

the programming system.

We apply our techniques to a few widely studied hybrid systems. In this chapter

we consider a system consisting of a thermostat with delay. In the next chapter, we

consider a simple version of the “two tanks” system. In Chapter 6, we will consider

a generalization of the two tanks system to n tanks, with other added complexities.

4.1 General CLP(F) Hybrid System Simulator

The program in Figure 4.1 is one way of implementing a general hybrid system sim-

ulator in CLP(F). The first parameter of the evolve procedure is the state of the

hybrid system at some time t0, which consists of a discrete state S and a continuous

state X. The second parameter is a list of values used to specify the particular hybrid

system. The third parameter is the final (or ending) state of the hybrid system at

some time t1, with t0 ≤ t1.

Observe that the procedures are relatively simple. To evolve in a trajectory,

evolve checks that it doesn’t change digital state, and that the continuous state

changes are in accordance with the ODEs. evolveSC allows the system to change

discrete states, and models the system evolving from one discrete state change to

the next. Typically, the continuous state will be represented by a pair of dependent
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% evolving along a trajectory in state S
evolve((S,X0),C,(S,X1)) :-

in_trajectory((S,X0),C,X1).

% evolving through discrete state changes
evolve((S0,X0),C,(S1,X1)) :-

in_trajectory((S0,X0),C,X01),
evolveSC((S0,X01),C,(S1,X11)), % X01,X11 are state change points
in_trajectory((S1,X11),C,X1).

% these evolve from statechange point to statechange point
% The "eqstate" is there because CLP(F) doesn’t unify interval
% variables in the head... You have to explictly unify them.
evolveSC((S0,X0),C,(S1,X1)) :-

eqstate(X0,X1), statechange((S0,X0),C,S1).

evolveSC((S0,X0),C,(S1,X1)) :-
statechange((S0,X0),C,S), % S01->S occurs at state X0
in_trajectory((S,X0),C,X), % X is in the trajectory after (S,X0)
evolveSC((S,X),C,(S1,X1)). % evolve from (S,X) to end...

% test if two continuous states are equal
eqstate(X0,X1) :-

X0=(T0,A0),X1=(T1,A1),{T0=T1,A0=A1}.

Figure 4.1: A general simulator for hybrid systems
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variables (T,A) where A is the value of some ideal system sensor at time T. The

in trajectory procedure looks up the ODE, C, that should hold in this state and

applies that ODE to the initial values X0 to get the a constraint relating X0, X1 and

C. We use a slightly modified version of this simulator in Section 6.4.

4.2 Rigorous Analysis of a Thermostat with Delay

This section shows how CLP(F) handles explicit time delays, and how we can use

it to ask questions about what values parameters should have to give a particular

behaviour, as well as asking how a system with particular parameters will behave.

This sort of analysis requires no more programming than modeling does, as CLP

languages are defined in such a way that constraints propagate in either direction.

Thus, with a CLP language, one can choose which values to look for, simply by

using variables for those parameters in a query. We consider the hybrid system of a

thermostat introduced by Henzinger et al. [HHWT98]. This is a system consisting of a

stirred pot of water with a temperature sensor and a heater in it. When the measured

temperature goes above a threshold, the logic circuit shuts off the heater (after a small

delay). Similarly, when the measured temperature goes below a threshold, the logic

circuit turns on the heater (after a small delay). The safety property in question is

to establish upper and lower bounds for the temperature of the water.

We use CLP(F) to define higher order constraints which specify that two points

lie on a trajectory defined by on ODE. For example, in the simplest model of a

thermostat we use the following CLP(F) procedure (taken from Figure 4.3, where

0This section describes work from Hickey and Wittenberg’s paper [HW03] in the 2004 Florida AI
Research Symposium.
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T0,T1 are times and A0,A1 are temperatures at those times, A is the temperature

function (so A(T0) = A0) and Alpha, Beta are the heat loss and the heater element

components, respectively, of the ODE for A. The parameter I is a bound on the width

of the interval on which A is defined. This bound is required because in CLP(F) all

functions must be defined on finite intervals.

ode((T0,A0),[I,[Alpha,Beta]], A,(T1,A1)) :-

type([A],function(0,I)),

{[ ddt(A,1) = Alpha * A + Beta, eval(A,0)=A0, eval(A,T)=A1,

A in [-1.0E100,1.0E100], T=T1-T0, T in [0,I] ]}.

This code means that the predicate ode((T0,A0),[I,[Alpha,Beta]], A,(T1,A1))

is true if and only if

• T0, T1, A0, A1, I, Alpha and Beta are real numbers.

• A is a function defined on [0, I]

• dA
dt = Alpha · A + Beta

• A(T0) = A0

• A(T1) = A1

• ∀t ∈ [T0, T1]A(t) ∈ [−1.0 · 10100, 1.0 · 10100]

The CLP(F) system is able to use this definition to compute (T1, A1) from

(T0, A0), or, as we will see below, to use this procedure to find values of the pa-

rameters Alpha and Beta which make the system behave in some desired fashion.
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In this case the ODE is f ′ = af + b, f(0) = a0, f(t) = a1 which can be solved

exactly. CLP(F) can handle trigonometric or exponential functions as well as the

linear functions shown here. In the next chapters we consider ODEs which (as far as

we know) have no closed form solutions.

To solve this exactly, use the solution

U · eα·T − β/α

which we program as follows:

newode((T0,A0),[I,[Alpha,Beta]],A,(T1,A1)) :-

% type([A],function(0,1)),

{

C = Beta/Alpha,

A0=U*exp(Alpha*T0) - C,

A1=U*exp(Alpha*T1) - C

}.

This has the same behaviour as the previous program, except that it doesn’t use

function variables, and will narrow its results more effectively.

Since CLP(F) uses brute force to model ODEs, it does not perform better on ones

which are solvable analytically. In Chapter 6 we show an example of using CLP(F)

to model a system with more complex functions.

In order to demonstrate CLP(F)’s ability to handle more complex examples, we

can model a system consisting of a fluid with temperature A(t) which is heated by

a heating element whose temperature B(t) has a non-linear component sin(B(t)) in
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its defining ODE. The component sin(B(t)) is not natural, but shows how CLP(F)

can handle non-linear components which are common in real systems. This system

is modeled by the procedure in Figure 4.2. We are unaware of a closed form for the

solutions of this ODE.

ode2((T0,A0),[I,[Alpha, Beta, Gamma, Delta]] ,A,(T1,A1)) :-
type([A,B],function(0,I)),

{[ ddt(A,1) = Alpha* A + Beta +Gamma*B,
ddt(B,1) = Delta*(B + 0.1*sin(B)),
eval(A,0)=A0, eval(A,T)=A1, eval(B,0)=1,
A in [-1.0E100,1.0E100], B in [-1.0E100,1.0E100],
T=T1-T0, T in [0,I]

]}.

Figure 4.2: Thermostat with Non-Linear Component

4.2.1 Henzinger’s Model and Analysis

In this section, we present the model of a thermostat with a delay in switching

used by [HHMWT00]. Henzinger’s model consists of a finite state controller with

an analog input measuring the temperature in the tank. The controller has a 1-

bit output to control a heater in the tank. The tank always loses heat at a rate

directly proportional to the temperature, and, while the heater is on, is heated at

4 degrees/second. Mathematically, after the heater reaches equilibrium in the on

position A′ = −A+4 and at equilibrium in the off position A′ = −A. The controller

switches the heater off within one second of the temperature going above a pre-set

value, and turns the heater on within one second of the temperature dropping below

another threshold. Note that this model assumes that the thermometer is perfect, the

heater produces a constant and perfectly known heat output, the element heats and
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cools instantly and the physics of the tank are perfectly modeled by the ODE. Given

those assumptions, they then use interval techniques to eliminate round off errors in

proving safety properties.

4.2.2 CLP(F) Model of the Thermostat

In this section we present two models of a thermostat. The first simple model demon-

strates the key ideas. The second illustrates how one can easily extend the simple

model to a model that more faithfully represents the real hybrid system by more

closely approximating the physics of the system.

The Simple Model

Our first CLP(F) model of a thermostat is shown in Figure 4.3. To clarify the key

concepts, this first model assumes there are only two states: on and off. When the

system state is on, the ODE governing the temperature A is A′ = −A+ 4. When the

system state is off, the ODE is A′ = −A. The system switches from on to off when

the temperature rises above 2.3 and it switches from off to on when it drops below

1.8. The in trajectory procedure models the trajectory by looking up the proper

ODE for the current state and then calling the ODE procedure to constrain the new

state variables (T1,A1). It also adds the constraint that the temperature range is

contained in [-1000, 2.3] (resp. [1.8,1000]). This is not needed for our simple

example because the temperature rises monotonically and then falls monotonically

and then rises again. With more complex models, the temperature might not behave

so nicely so this constraint states that no point in the trajectory has passed the

threshold for switching. The statechange procedure simply indicates the condition
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that signals a state change and provides the new state. The ode procedure models

the specified ODE as we have described above. Finally the test procedure shows

how this program can be used to model the behavior of the system. It initializes the

list describing the system to be analyzed and then invokes the evolve procedure.

A simple query (“at what times is the temperature 2?”) to this system and the

resulting answer is shown in Figure 4.4.

One subtle point about this model is that the CLP(F) solver will only work ef-

fectively if a sufficiently small step size is explicitly given (this is the I parameter

appearing in the in trajectory and ode procedures. If the step size is too large,

then the CLP(F) solver will return very wide, unhelpful intervals for all variables. One

approach to handling this is to introduce pseudo states (on,n), (off,n), where n is

an integer representing the number of full steps that have been taken on the current

trajectory in the current state. The continuous part can be modeled as (t,a,z) where

t is the total elapsed time, a is the temperature at time t, and z is the time relative

to the current step. Such an extension of the current technique is straightforward

and we do not show it here due to space limitations.

4.2.3 A More Realistic Model

In the example shown in Figure 4.5, we refine the previous model by using six

states on,sw0,cooling,off,sw1,heating corresponding to the states in Henzinger’s

model. The state diagram is shown in Figure 4.6.

The model also represents the continuous state as a triple T,A,Z where T is the

total elapsed time, A is the temperature at time T, and Z is the time since the system

entered the current state. The Z parameter is needed to implement the “switch-



56 CHAPTER 4. MODELING NON-LINEAR HYBRID SYSTEMS IN CLP(F)

evolve(H,C,H).

evolve((S,X0),C,(S,X1)) :- %% evolving along a trajectory in state S
in_trajectory((S,X0),C,X1).

evolve((S0,X0),C,(S1,X1)) :- % evolving through discrete state changes
in_trajectory((S0,X0),C,X01),
evolveSC((S0,X01),C,(S1,X11)), % X01,X11 are state change points
in_trajectory((S1,X11),C,X1).

% these evolve from statechange point to statechange point
evolveSC((S0,X0),C,(S1,X1)) :-

eqstate(X0,X1), statechange((S0,X0),C,S1).

evolveSC((S0,X0),C,(S1,X1)) :-
statechange((S0,X0),C,S), % S01->S occurs at state X0
in_trajectory((S,X0),C,X), % X is in the trajectory after (S,X0)
evolveSC((S,X),C,(S1,X1)). % evolve from (S,X) to end...

% test if two continuous states are equal
eqstate(X0,X1) :- X0=(T0,A0),X1=(T1,A1), {T0=T1,A0=A1}.

in_trajectory((S0,(T0,A0)), [I, Min, Max, ODEs],(T1,A1)) :-
member(S0=ODE,ODEs), {T=T1-T0,T=<I}, ode((T0,A0),[T,ODE],A,(T1,A1)),
( (S0=on, {[A in [-1000,Max] ]});

(S0=off, {[A in [Min,1000]]})).
statechange((S0,(T0,A0)), [_I, Min, Max, ODEs],S1) :-
( (S0=on, {A0=Max}, S1=off);

(S0=off {A0=Min }, S1=on) ).

ode((T0,A0),[I,[Alpha,Beta]], A,(T1,A1)) :-
type([A],function(0,I)),

{[ ddt(A,1) = Alpha * A + Beta, eval(A,0)=A0, eval(A,T)=A1,
A in [-1.0E100,1.0E100], T=T1-T0, T in [0,I]

]}.

Figure 4.3: Simplest CLP(F) model of a thermostat
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% to find full/half cycle times: call as ?- test(S,(T,A)),{A=2}.
test(S,X) :-

% Step, Min, Max, ODES for on/off
C=[ 2.0, 1.8, 2.3, [on=[-1,4],off=[-1,0]]],
evolve((on,(0.2,0)),C,(S,X)).

| ?- test(S,(T,A)),{A=2}.
A = 2, S = on, T = 0 ?
A = 2, S = off, T = 0.3022808718... ? ;
A = 2, S = on, T = 0.5029515673... ?

Figure 4.4: Query to Simple Model - When is Temp = 2?

ing” specification which states that the system waits some amount of time after the

threshold is passed before switching on/off the heating element. Likewise, the time

in which the system is heating/cooling before it “jumps” to the maximum/minimum

value is given by a time unit. This represents a discontinuity in the model since the

heating temperature is assumed to immediately rise to the maximum at the end of

the element-heating period.

The sw0, sw1 states are when the system is waiting before switching the heating

element on or off. The heating, cooling states are when the element is warming up

or cooling down. The on, off states are when the element is fully on or off. Observe

that the ODEs for each state are specified in the variable C of the test procedure.

Also, observe that the switching conditions are given declaratively in the statechange

procedure. Finally, note that the system is assumed to be modeled by the following

more complex non-linear family of ODEs, where the parameters (α, β, γ, δ) vary from

state to state:

∀t ∈ [0, I] A′(t) = αA(t) + β + γB(t)
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in_trajectory((S0,(T0,A0,Z0)),R, [Step, Min, Max, Delay, Stime, ODEs],
(T1,A1,Z1)) :-

member(S0=ODE,ODEs), {Z1=T, T=T1-T0, T=<Step},
ode((T0,A0),[T,ODE],A,(T1,A1)),
((S0=on, {[A in [-1000,Max] ]});
(S0=sw0, {[T =< Delay]});
(S0=cooling, {[T < Stime, A in [Min,1000] ]});
(S0=off, {[A in [Min,1000] ]});
(S0=sw1, {[T =< Delay]});
(S0=heating, {[T < Stime, A in [-1000,Max] ]})),

{[V in [0,Z1], eval(A,V)=R]}.

statechange((S0,(T0,A0,T)),[Step, Min, Max, Delay,Stime,ODEs],S1) :-
((S0=on, {A0=Max}, S1 = sw0);
(S0=sw0, {T=Delay}, S1=cooling);
(S0=cooling, {T=Stime}, S1=off);
(S0=cooling, {A0=Min}, S1=sw1);
(S0=off, {A0=Min }, S1=sw1);
(S0=sw1, {T=Delay}, S1=heating);
(S0=heating, {T=Stime}, S1= on);
(S0=heating, {A0=Max}, S1= sw0)).

ode((T0,A0),[I,[Alpha,Beta, Gamma,Delta]], A,(T1,A1)) :-
type([A,B],function(0,I)),

{[ ddt(A,1) = Alpha * A + Beta +Gamma*B, ddt(B,1) = Delta * B,
eval(A,0)=A0, eval(A,T)=A1, eval(B,0)=1,
A in [-1.0E100,1.0E100], B in [-1.0E100,1.0E100],
T=T1-T0, T in [0,I]

]}.

test(S,X,D) :-
C=[ 2.0, 1.8, 2.3, 0.05, 0.1, [on=[-1,4,0,1],off=[-1,0,0,1],

sw0=[-1,4,0,1],sw1=[-1,0,0,1], heating=[-1,4,-4,D],
cooling=[-1,0,4,D]

]],
evolve((on,(0.2,0),C,(S,X)).

Figure 4.5: More Complete Model of Thermostat
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Figure 4.6: State model allowing thermostat to shut off before element is warm

| ?- {D in [-8,-7]}, test2(S,(T,A,Z),D),{T=0.5},S=off,
narrow_all(1000000).

A = 2
D = -7.6651...
S = off
T = 0.500*
Z = 0.1874810705022... ?;
(14280 ms) no

Figure 4.7: Example query of more complex model

∀t ∈ [0, I] B′(t) = δB(t)

T = T1 − T0, 0 ≤ T ≤ I

A(0) = A0, A(T ) = A1, B(0) = 1

A([0, I]), B([0, I]) ⊂ [−10100, 10100]

The variable B represents the heat transfer from the heating element and we assume

that the rate at which it heats and cools depends on its temperature.

Figure 4.7 shows an example in which the model is used to find all values of the

ODE parameter δ in the range [−8, −7] for which the system evolves to the state with
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S=off and A = 2 in exactly 0.5 seconds.

4.3 Refining the Thermostat Model

One of the advantages to using a constraint based system is that one can use step-

wise refinement to improve the accuracy of a model as one learns more about the

underlying physics. Here we demonstrate this using the thermostat as an example.

The thermostat model as presented above could be refined in several ways to

more accurately reflect the real Hybrid System. In this section we discuss possible

refinements.

4.3.1 Accurately modeling measured data

The first refinement is to observe that in order to model the physical uncertainties,

we could include in our model error terms for each physical measurement. In most

cases the size of the error terms will be given by the manufacturer’s specification.

Interval arithmetic makes it straightforward to explicitly model the error-bars in var-

ious physical measurements. We simply consider each of the physical measurements

to give an interval result rather than an absolute number.

4.3.2 Measuring Temperature

We use A(t) to describe the actual average temperature of the water in the tank.

Note that this is a platonic ideal, and cannot be measured at all. We could use M(t)

to denote the temperature measured by the thermometer and converted by the A/D

converter. We would then assume that for all t : |M(t) − A(t)| ≤ εtemp. The value of
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εtemp could be estimated from the specifications of the thermometer, and knowledge of

the efficiency of the stirrer and the assumption that the temperature does not change

too rapidly. To make this change in our code, we simply add the constraint above,

and have jump transitions (which depend on measured values) use M(t), while the

flow transitions continue to use A(t).

4.3.3 Heater Element Description

Henzinger et al. consider a heating element, and assume that the power transfered

from the element to the water is a constant while the element is on. This is only a

valid approximation when the water temperature is more or less constant.

Our model provides an improved approximation in that it includes the tempera-

ture of the heating element as part of the model. There is, of course, some variation

in the heater output, and the actual power should be described by g(t), which (after

the power has been in the “on” position long enough to achieve equilibrium) differs

from G by less than some small constant εheat.

We could alternatively have improved Henzinger’s model by starting with a model

of the heater being powered up or powered down by constraining the time hmax it

takes the heater to get to within εheat of G when turning on, or within εheat of 0 when

turning off, and noting that during that time, −ε ≤ g ≤ G + ε.

We could then refine this model by using a linear change from one state to the

other with a sufficient error bar, so if the element was turned on at time t0, g(t) ∈

[−ε+((t− t0)∗G− εheat), ε+((t− t0)∗G+ εheat)] and we could also add similar error

bars to the exponential decay model of the heating element which we use above. We

could also use error bars for the heat loss and other parameters describing the Hybrid
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System.

This sort of detailed analysis can be done for any hybrid system. What CLP(F)

offers is a relatively simple way to make these refinements to an existing model.
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5.1 Two Tanks in CLP

5.1.1 Description of the Two Tanks Problems

The “two tanks” problem is a system consisting of two water tanks. There is a flow of

water in to the higher tank, and a horizontal pipe from the bottom of the higher tank

to some point in the side of the lower tank. There is an outflow pipe at the bottom

of the lower tank. A diagram of the system is shown in Fig. 5.1. In some versions of

the problem, there are valves controlling some or all of the input flow, the flow in the

pipe between the two tanks, and the output flow. The obvious questions to ask are

“Is there an equilibrium given a set of flow rates?”, “Does either tank overflow before

equilibrium is achieved?”, and, in the case where the model has program controlled

valves, “Does some particular program have a specified safety property?”

Kowalewski et al. [KSF+99] use six methods to model what they consider to be

a realistic version of this two tanks problem previously studied by the same group

(Stursberg et al. [SKHP97]). Later, Henzinger et al. [HHMWT00] provided another

technique for studying a simplified version of this problem. Here, we consider the

simplified version with no valves. In the next chapter we will add valves to show the

CLP(F) system is well adapted to stepwise refinement of a problem.

Mathematics of the Two Tanks Problem

The precise problem we study can be described as follows. There are two tanks, an

upper tank and a lower tank. The height of the water in the upper tank at time t is

given by f1(t) and the height of the water in the lower tank is f2(t). The heights f1

0Much of the work in this section was first reported in Hickey and Wittenberg [HW04] presented
at the 2004 Hybrid Systems: Computation and Control conference
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K3

f1(t)

f2(t)

Figure 5.1: Two Tanks System

and f2 are measured from the bottom of their respective tanks. There is a constant

inflow of water into the upper tank (where the flow rate is given by a constant k1),

and a flow rate out of the bottom tank given by k4

√
f2. The bottom of the upper

tank is k3 meters above the bottom of the lower tank and there is a horizontal pipe

connecting the bottom of the upper tank to the lower tank. The flow (w(t)) through

the pipe, and the heights f1(t) and f2(t) are governed by a pair of ODEs in the

constant k2 and the water heights in the two tanks. One member of the pair holds

when the water in the lower tank is below the level of the connecting pipe (f2(t) ≤ k3),

the other member of the pair holds when the water level is above the connecting pipe

(f2(t) > k3). When the water level is equal to the height of the connecting pipe, the

ODEs are the same, so we choose one arbitrarily. Because the initial conditions have

the water level in the upper tank above the water level in the lower tank, and flow

into the upper tank and out of the lower tank, the level in the lower tank never gets

above the level in the upper tank (f1 + K3 ≥ f2).
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These ODEs are:

f ′
1 =






k1 − k2

√
f1 − f2 + k3 f2 > k3

k1 − k2

√
f1 f2 ≤ k3

f ′
2 =






k2

√
f1 − f2 + k3 − k4

√
f2 f2 > k3

k2

√
f1 − k4

√
f2 f2 ≤ k3

w(t) =






k2

√
f1 − f2 + k3 f2 > k3

k2

√
f1 f2 ≤ k3

5.2 Rigorous Simulation of Two Tanks Problem

In this section, we give the complete CLP(F) program describing the two tanks prob-

lem, and show how it can be used to rigorously model the behavior of this system.

The program consists of two parts. The first part (Figure 5.2) describes the

relation between the heights of the waters in the two tanks at two times t0 and t1.

There are four cases considered:

• case 1: the lower tank’s water level is above the pipe throughout the interval

[t0, t1]

• case 2: the lower tank’s water level is below the pipe throughout the interval

[t0, t1]

• case 12: the lower tank’s water level is above the pipe at time t0 and stays above

until some point t2 , at which it is equal to the height of the lower pipe, and

then remains below the pipe until time t1.
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• case 21: the symmetric case, where the water level in the lower tank rises from

t0 to t1 and is equal to the height of the pipe at exactly one time t2.

Note that there are other possible behaviours not covered by these four cases, such

as when the system switches state more than once in a given time period. The code

is a straightforward representation of these cases. We now walk through case1. The

other cases are analogous. The predicate twotank states the following:

twotank(Case1,X10,X20,T0,X11,X21,T1,[K1,K2,K3,K4]) is true if and only if

X10,X20,T0,X11,X21,T1 are real numbers with T0 ≤ T1 , and X10 + K3 ≥ X20, X11+

K3 > X21, and X10 > .00001 , and

• There exist two functions X1 and X2 defined on the domain [T0, T1],

( decls([X1,X2],function(T0,T1)),)

• the first derivative of X1 is equal to

K2 ·
√

X1 − X2 + K3 (ddt(X1,1) = K1 - K2*psqrt(X1-X2+K3) )

• the first derivative of X2 is equal to K2 ·
√

X1 − X2 + K3 − K4 ·
√

X2

( ddt(X2,1) = K2*psqrt(X1-X2+K3) - K4*psqrt(X2))

• X1(T0) = X10, X1(T1) = X11, X2(T0) = X20, X2(T1) = X21

(eval(X1,T0)=X10, eval(X1,T1)=X11, eval(X2,T0)=X20,

eval(X2,T1)=X21)

• the range of X1 is [.0000001, 1000] and the range of X2 is [K3, 1000]

( X1 in [E,1000], X2 in [K3,1000], E=0.0000001)

The {[ ]} pair around the last five lines defines those lines as function constraints,

and CLIP does as much narrowing as possible based on those constraints. The final
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“.” ends the assertion.

We use the range constraints X2 in [K3,1000] to specify that the height of the

water in the second tank is always above K3. The lower bound is there as a condition

of being in case1, while the upper bound is specified to be 1000, which is far above

the (assumed) height of the tank. Providing a finite upper bound on a function

is often necessary in CLP(F), as without it CLP(F) is unable to bound the higher

derivatives, and therefore unable to start narrowing. Note that the problem of finding

the transition point t2 is automatically handled by the underlying CLP(F) system by

simply adding the constraint X2a=K3 in case21.

The second part of the program is an iterator (Figure 5.3) that repeatedly steps

through the time domain applying the appropriate case (or when nondeterminism

is present, cases) to compute the current water levels in the two tanks. The logical

semantics of iterate is: iterate(N, DT,X10,X20,T0,X10,X20,T0,Ks) is true if and

only if the two tank system described by the parameters Ks will go from the state

where the two tanks have depths X10,X20 respectively at time T0 to the state where

they have depths X11,X21 respectively at time T1 in N≥ 0 time steps of length DT

where each time step can be classified as one of the four cases listed above. Note that

iterate is false if two or more transitions take place in one time step of size DT. This

limitation is removed in the version of the program in the next chapter.

There are three assertions for iterate. The first states that iterate for a negative

number of steps fails. The second says that iterate for zero steps requires that the

values of X1, X2, and T don’t change. The third assertion is the recursive step.

It states that the inductive hypothesis that a path of N steps exists if there is a

single step followed by a path of N− 1 steps. The contract vars construct is a time
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twotank(case1,X10,X20,T0,X11,X21,T1,[K1,K2,K3,K4]) :-
decls([X1,X2],function(T0,T1)),

{[ ddt(X1,1) = K1 - K2*psqrt(X1-X2+K3),
ddt(X2,1) = K2*psqrt(X1-X2+K3) - K4*psqrt(X2),
eval(X1,T0)=X10, eval(X1,T1)=X11,
eval(X2,T0)=X20, eval(X2,T1)=X21,
X1 in [E,1000], X2 in [K3,1000], E=0.0000001

]}.

twotank(case2,X10,X20,T0,X11,X21,T1,[K1,K2,K3,K4]) :-
decls([X1,X2],function(T0,T1)),

{[ ddt(X1,1) = K1 - K2*psqrt(X1),
ddt(X2,1) = K2*psqrt(X1) - K4*psqrt(X2),
eval(X1,T0)=X10, eval(X1,T1)=X11,
eval(X2,T0)=X20, eval(X2,T1)=X21,
X1 in [E,1000], X2 in [E,K3]

]}.

twotank(case12,X10,X20,T0,X11,X21,T1,Ks) :-
{T0=<Ta, Ta<T1},Ks=[_,_,K3,_],{X2a=K3},
twotank(case1,X10,X20,T0,X1a,X2a,Ta,Ks),
nl,nl,print(case12(X1a,X2a,Ta)),nl,nl,
twotank(case2,X1a,X2a,Ta,X11,X21,T1,Ks).

twotank(case21,X10,X20,T0,X11,X21,T1,Ks) :-
{T0=<Ta, Ta<T1}, Ks=[_,_,K3,_],{X2a=K3},
twotank(case2,X10,X20,T0,X1a,X2a,Ta,Ks),
nl,nl,print(case21(X1a,X2a,Ta)),nl,nl,
twotank(case1,X1a,X2a,Ta,X11,X21,T1,Ks).

% equilibrium is at X10=0.625, X20=0.5625,
ks([K1,K2,K3,K4]) :- K2=1, K4=1, % sqrt(meters)/second

K3=0.5, % meters
K1= 0.75. % meters/sec

Figure 5.2: CLP(F) code for Case1, Case2, and transitions between them
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iterate(N,_DT,X10,X20,T0,X10,X20,T0,_Ks) :- {N<0},fail.
iterate(N,_DT,X10,X20,T0,X10,X20,T0,_Ks) :- {N=0}.
iterate(N,DT,X10,X20,T0,X11,X21,T1,Ks) :-

{T1a=T0+DT, N1=N-1},
contract_vars([X1a,X2a,T1a],
twotank(_Case,X10,X20,T0,X1a,X2a,T1a,Ks)),
iterate(N1,DT,X1a,X2a,T1a,X11,X21,T1,Ks).

Figure 5.3: CLP(F) code for iterating to find a fixpoint

and space optimization that doesn’t change the declarative semantics of the clause.

contract vars solves the constraint and contracts the intervals of the variables listed

in its first parameter. Then it cleans the stack of all the temporary constraints used.

This saves a great deal of space at the cost of losing some constraints which may have

contributed to further narrowing.

This program makes the assumption that the water level does not cross the height

of the pipe more than once in any DT interval. We could handle this by making the

program a little more complex, but for presentation purposes we stick to this simple

case for now. (We would need to use an adaptive step size when switching from case

1 to case 2 or back).

This program can now be executed by loading it into the CLP(F) interpreter

and posing queries. For example, in Figure 5.4 we show the (slightly edited) output

results of a query that rigorously follows the water levels over a period of two seconds

with 0.1 second steps. Note that it finds the transition point from case 2 to case 1

automatically. The calculation took 53.5 seconds on a 500 MHz Pentium III running

Linux.
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| ?- reset_clip, ks(Ks),iterate(N,0.1,0.75,0.375,0, X,Y,T, Ks).

N = 0 X = 0.75 Y = 0.375 ? ;
N = 1 X = .738726862085376... Y = .399047107506... ? ;
N = 2 X = .7280907797217... Y = .420650585576... ? ;
N = 3 X = .7180600004968... Y = .44006784395... ? ;
N = 4 X = .7086039345668... Y = .45752125423... ? ;
N = 5 X = .69969315162... Y = .47320505137... ? ;
N = 6 X = .691299373883... Y = .4872904076... ? ;
N = 7 X = .6833954653... Y = .4999292640... ? ;

case21(X = .68335011672..., Y = [.49999, .50000], T = .7005915275...)

N = 8 X = .67628864233... Y = .5109318083... ? ;
N = 9 X = .6702047371... Y = .5202036733... ? ;
N = 10 X = .664998108... Y = .52800756... ? ;
N = 11 X = .660542112... Y = .534567665... ? ;
N = 12 X = .656727105... Y = .540075051... ? ;
N = 13 X = .6534585... Y = .54469235... ? ;
N = 14 X = .6506551... Y = .54855781... ? ;
N = 15 X = .6482472... Y = .5517887... ? ;
N = 16 X = .646175... Y = .5544847... ? ;
N = 17 X = .644388... Y = .5567299... ? ;
N = 18 X = .642844... Y = .558595... ? ;
N = 19 X = .64150... Y = .560142... ? ;
N = 20 X = .6403... Y = .561420... ?

Figure 5.4: CLP(F) results showing transition between cases
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5.3 Rigorous Analysis of the Two Tank System

Using simulation techniques, as we do, the analysis of a system can be no better

than the simulation of that system. The analysis techniques we describe here are

essentially applications of the simulation techniques from the previous section.

The program considered in the Section 5.2 can be used to prove properties of the

two tanks system. In this section we show how to prove the following safety property,

which states that if the tank levels are ever sufficiently close to an “equilibrium”

point, then they stay relatively near that point forever, more precisely:

If the tank levels X0 for the upper tank and Y0 for the lower tank satisfy

0.62 ≤ X0 ≤ 0.63 ∧ 0.558 ≤ Y0 ≤ 0.567

at time 0, then for all times t in the future the tank levels X and Y satisfy

0.61922 ≤ X ≤ 0.63083 ∧ 0.55674 ≤ Y ≤ 0.56815

We prove this in two steps. First we prove that if the tank levels are in the initial

interval [0.62, 0.63] × [0.558, 0.567] at time 0, then they are also in that interval at

time 0.1. This implies that they are in that interval at time N ∗ 0.1 for all integers

N . We can use this inductive proof because the dynamics of the system depend only

on the starting point, and not on the absolute time. Next we prove (Fig. 5.7) that if

they start in the given interval at time 0, then they are in the second stated interval

at all times t with 0 ≤ t ≤ 0.1. This proves the safety property.
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The first part can be proved directly by using the solve clip solver which pro-

vides increasingly more precise bounds on the answer constraint as shown in Figure

5.5. This corresponds to the standard interval arithmetic ODE solving approach.

fwchk is a “forward checking” solver, that is a divide and conquer solver which di-

vides the domain into a set of K boxes (initially K = 1) and in each step it divides

each box into 2V sub-boxes, where V is the number of variables in the list it is given,

and applies the default narrowing procedure. Any boxes that are proved to contain

no solutions are discarded and the result is returned as the smallest box containing

all of the remaining boxes. On a 500 MHz Pentium III, it takes over 15 minutes to

prove this directly. Of that, the N=5 case took 11 minutes.

Another approach to proving the first part is to use constraints and try to find an

initial point (X,Y ) such that after 0.1 seconds it is “out of the box”. This is specified

by the query in Figure 5.6. As can be seen, this returns with a “no” answer, which

means no such point exists and hence all such (X,Y ) must end up inside the “box”.

The calculation takes about 1.3 seconds and is more elegant than the direct approach.

The second part of the proof, involves computing the range of possible values of

(X,Y ) over the interval [0, 0.1] assuming they start in the specified box. This is done

in just under one second by making the query in Figure 5.7. By giving a range for

T this query returns a constraint on the range of each variable over the entire range

[0, 0.1] of T, as well as whatever uncertainty the calculation includes. Again, the

ubiquity of intervals adds power in unexpected ways.
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| ?-{X0 = [0.62,0.63],Y0=[0.558,0.567]},
ks(Ks), twotank(case1,X0,Y0,0.0,X,Y,0.1,Ks),
solve_clip(fwchk,[X,Y],N),get_bounds(X,Lx,Hx),
get_bounds(Y,Ly,Hy).

N = 0 X = [.61931, .63069] Y = [.55697, .56802];
N = 1 X = [.61964, .63035] Y = [.55758, .56741];
N = 2 X = [.61985, .63013] Y = [.55796, .56703];
N = 3 X = [.61995, .63004] Y = [.55812, .56687];
N = 4 X = [.62000, .62999] Y = [.55819, .56680];
N = 5 X = [.62002, .62997] Y = [.55822, .56677]

(929350 ms) yes
| ?-

Figure 5.5: IA direct proof of safety property

| ?- {X10 = [0.62,0.63],X20=[0.558,0.567]},
ks(Ks), twotank(case1,X10,X20,0.0,X11,X21,0.1,Ks),

({X11<0.62} ; {X11>0.63}; {X21<0.558}; {X21>0.567}).

(1330 ms) no
| ?-

Figure 5.6: Safety Property Proof via negative answer

|?- {T = [0,0.1]}, {X10 = [0.62,0.63],X20=[0.558,0.567]},
ks(Ks), twotank(case1,X10,X20,0.0,X,Y,T,Ks).

T = (0,0.10000000000000001942890293094)
X = [.61924, .63076]
Y = [.55697, .56802] ?

(900 ms) yes
| ?-

Figure 5.7: computation of range over [0, 1] in Safety analysis
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5.3.1 Multi-step Convergence

Henzinger et al. [HHWT98] analyzes reachability by using over approximation. Con-

sider the space defined by the real variables. All calculations are done on rectangles in

that space, such that the rectangle completely contains the region that it is modeling.

By maintaining a frontier (a list of areas which have not been explored, but which

border on the areas which are reachable) and a list of areas which are reachable, one

can explore areas to determine what areas can be reachable, and not have to consider

any area more than once.

When trying to determine whether a system started in a specific state S0 avoids

certain areas, one can try to show that the system converges on a state S1, which has

the appropriate safety property. One could keep a set of reachable states (actually an

area of state space which the intervals cover) Each simulated step might add a new

region to the reachable states, and one could stop adding new regions when adding

a region did not increase the reachable states set. Testing to see whether a region

being added actually changes the set is a computational geometry question. We have

some algorithms (which we have not yet implemented) which seem fairly efficient.
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In the previous two chapters we modeled two rather small systems, and used

CLP(F) to ask both “how does this system behave?”, and “what parameters will

cause the system to behave in a different way”. In this chapter we show that we can

scale up a model in CLP(F). We add complexity in several forms. The simpler is

to have a larger system. We move from a system with two tanks to one with four

tanks, and we add valves to the pipes connecting the tanks. The more important is

the refinement of the model in several places. We use a valve model with the flow

varying exponentially with the valve position over much of the valve’s range, and then

discontinuously as the valve is almost closed. We introduce hysteresis in our analysis

to avoid an infinite loop of zero-time transitions, and we discuss why our techniques

should not have trouble with “Zeno” transitions.

We start by adding valves to the model. We note that the model in Kowalewski

et al. has the behaviour of the valve discontinuous at 0 (by 5% of full flow), and

show how a broad constraint handles that. In a hybrid system, the interface between

the analog and the digital part involves imperfect hardware whose description must

include error bars. The models of system behaviour are often particularly imprecise

near boundaries. We use intervals to handle the issue of imprecision in measurements,

and use intervals in a novel way to rigorously model the behaviour of systems near

boundary points.

6.1 Extending Two Tanks to N Tanks

In Section 5.1, we showed how CLP(F) could model the simplified two tanks problem.

In this chapter, we show how the CLP(F) model can easily be extended to the “tank
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flow problem”, an extension of the two tanks system to an arbitrary number of tanks,

and to do so more rigorously than other methods can. Here, we consider a four tank

version with valves between each pair of tanks and at the output.

V1

V2

V3

V4

D2(t)

D3(t)

D4(t)

H1

H3

D1(t)

H4

H2

Figure 6.1: Diagram of Tank Flow system for n = 4

Mathematics of the Tank Flow Problem

The problem we study is diagrammed in Fig. 6.1 and the parameters and variables

are shown in Table A.1. The problem can be described as follows: There are n tanks,

numbered from 1 to n, with the bottom of each tank lower than the bottom of the

previous tank. The depth of the water in each tank j at time t is given by Dj(t)

The depths Dj are measured from the bottom of their respective tanks. The height

of the bottom of each tank j is Hj above an arbitrary horizontal datum, perhaps sea

level. Each tank j has a horizontal pipe leaving from the bottom of the tank. The
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Hj Height of tank j above sea level
Vj inverse of time for valve j to open or close
Cj pipe coefficient of pipe j when the valve is fully open
Ej exponent for describing the valve’s behaviour

Pj(t) position of valve j 0 is fully closed, 1 is fully open
Mj(t) valve motion – closing, opening, halted
Rj(t) program variable for valve regime - shut, transition, normal
Dj(t) Depth of water in tank j at time t (measured from bottom of tank.)
Ij(t) rate of flow through pipe j at time t

Table 6.1: Parameters and Variables

flow through that pipe is Ij, and there is a valve Vj on the pipe. There is a constant

inflow of water into the upper tank (where the flow rate is given by a constant f00).

The general equation for flow through a pipe is that the rate of flow is proportional

to pipe coefficient times the square root of the height difference of the water levels at

each end.

Specifically, the flow Ij(t) through pipe j connecting tank j to tank j + 1 is

governed by a pair of ODEs in the resistance Rj(t) to flow (which is a combination

of the pipe coefficient Cj, valve coefficient Ej, and the valve position Pj(t)) and the

pressure difference, which is proportional to the square root of the difference in water

heights on each end of the pipe. The pipe coefficient Cj describes how easily water

flows through the pipe when the valve is in the fully open position, while the valve

coefficient Ej describes how quickly the valve shuts off the flow of water. If the water

level in the lower tank is below the pipe bringing water in, there is no back pressure in

the pipe, so we can ignore the water level in the lower tank. If the water level in the

lower tank is higher than the input pipe, we have to include the effect of back pressure

on the flow through the pipe. Therefore, we have a pair of ODEs for each pipe. One
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ODE of the pair holds when the water in the lower tank (j + 1) is below the level

of the connecting pipe (Dj+1(t) ≤ Hj − HJ+1), the other member of the pair holds

when the water level is above the connecting pipe (Dj+1(t) > Hj − HJ+1). When

the water level is equal to the height of the connecting pipe, the ODEs are the same,

so we choose one arbitrarily. Later (Section 6.3.4) we will show how to rigorously

handle this point where the ODEs change, and which is therefore not analytic. Note

that even if the water level is above both ends of a pipe, if the water levels (measured

from sea level) are equal, the ODE is non-analytic because the square root1 function’s

derivative is infinite at 0. We handle these two different reasons for an ODE to be

non-analytic in exactly the same manner, described in Section 6.3.

The valve decreases the flow by a fraction which decreases exponentially with the

valve position. Recall that since Dj is the depth in a tank, Ij−1 the flow into that

tank, and Ij the flow out, D′
j = Ij−1 − Ij The ODEs for middle tanks (the first and

last tanks are similar) are:

Ij(t) =






0 Pj(t) = 0

eEj ·(1−Pj(t))3 · Cj

√
Dj(t) − Dj+1(t) + Hj − Hj+1 Dj+1(t) > Hj − Hj+1

eEj ·(1−Pj(t))3 · Cj

√
Dj(t) Dj+1(t) ≤ Hj − Hj+1

Where Pj is the position of the valve Cj is the pipe coefficient, the value under

1We really want a function which is the positive square root of a positive number, and the
negative square root of the absolute value of a negative number to properly describe the fluid flow.
This function is also not analytic at 0. Here we do not allow for later tanks to have higher water
level than earlier tanks, so we do not consider “backwards” flow.
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the radical is the effective difference in height between the two tank’s water levels,

and the exponential term is the fraction by which the valve decreases the flow.

6.2 Handling State Changes

A hybrid system of any size will have different ODEs to describe it at different times.

Writing each ODE explicitly (as we did for a simpler example in Section 4) is im-

practical because of a combinatorial explosion in the number of ODEs. To avoid

this problem, we parameterize the ODEs describing the system, so a state change is

modeled by a change in some of the parameters to an ODE rather than making a

different ODE active.

The ODEs governing a hybrid system can change for either of two reasons. The

first is if the digital part of the system has a state change which affects the ODEs. We

call this a program control change. The other is if the continuous system evolves in

such a way as to change the ODEs, such as evolving to a point where water overflows,

or the water level in a tank rises above the input pipe to that tank, causing back

pressure, and decreasing the flow rate. We call these events regime changes. One

case of regime change is when a valve that had been opening (or closing) becomes

fully open (or closed). That affects the ODEs, by changing the rate at which the

valve position changes, not by changing the water flow directly. A helpful feature of

CLP(F) is that we can model changes in ODEs caused by program control and those

caused by regime changes in exactly the same way.

Figure 6.2 is a state diagram for each valve except the last in the tank flow problem.

(The last valve has no lower tank, so the level in the lower tank can’t rise above the
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height of the pipe.) The states are described by two ternary variables, M (Valve

Motion Regime) describes the motion of the valve as one of (opening, closing,

halted), while R (Valve position regime) is one of (shut, trans, normal). When

R takes the value shut it means that the valve is closed, normal means that the valve

is open, and not too near the closed position. The R value trans means that the

valve is in a transitional region and is nearly, but not quite closed. The transitional

region is used to model the regime where the ODEs are not well understood, so we

use a simple constraint in that regime.

shut
opening

trans
opening

normal
opening

normal
halted

normal
closing

trans
closing

shut
halted

Change Regimestate changeProgram

Figure 6.2: State diagram for ODEs

6.3 Handling Boundary Areas

One of the problems in rigorous modeling is that often there are areas where one’s

original model breaks down for some reason. This reason can be an area where the



84 CHAPTER 6. SCALING UP TO REALISTIC SYSTEMS

physics are unclear, a point where the defining functions are not analytic, or perhaps

a function which is poorly defined at a limit point. This section deals with a single

technique which allows one to deal with all of these problems.

6.3.1 Dealing with Poorly Defined Regions

In many systems, the physics in some regions is not well-understood. Most hybrid

system techniques ignore this and simply assume that the ODEs which work in most

areas work near boundaries as well. For example, in the tank flow problem when a

tank is almost empty, the flow from it may be irregular and come in discrete drops

rather than as a continuous flow. At these points, we don’t claim to understand the

details of the flow, but we can model them rigorously by writing constraints which

clearly include any possible behaviour of the flow. We don’t consider an empty tank

in this case, except to constrain our description of the system to cases in which the

water level in each tank is at least E.

A further problem is that the physics of the system may not be understood per-

fectly. In most cases, one measures a value (here, the flow through a valve as a

function of how open the valve is) at several points, uses physical theory to decide

that the curve should be an exponential, and then uses a least-squares fit to find a

curve which best describes the measurements. There is, of course, error in the mea-

surement of each point, so the coefficients for the exponential curve have some (hard

to calculate) error bars. In addition, the behaviour when the valve is almost closed

does not follow the exponential decay curve, and is extremely difficult to measure

precisely.

For example Kowalewski et al. [KSF+99] describe a valve by a function Ki(P )
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giving the pipe coefficient and valve coefficient of the valve as a measured function of

how open the valve is. For the first valve, the function they give is:

K1(P1) =






1.85 · 10−4 · e−6·10−6·P 3
1 m5/2

s if 0 ≤ P1 < 80

0m5/2

s if P1 = 80

and for the second valve, they give:

K2(P2) =






2.26 · 10−4 · e−5.7·10−6·P 3
2 m5/2

s if 0 ≤ P2 < 80

0m5/2

s if P2 = 80

In neither case do they give error bars. Their model has 80 as a fully closed valve, and

0 for a fully open one. We describe our valves more naturally, with 0 corresponding

to fully closed and 1 to fully open. Using our descriptions, we get values of C1 =

1.85 · 10−4, E1 = −3.1, C2 = 2.26 · 10−4, and E2 = −2.9 for the constants describing

flow. The equation for total resistance in the pipe (which they call K) is

Rj(t) = Cj · eEj ·(1−Pj)3

Figure 6.3 shows a graph of R vs. P for valve 1. The curve is an exponential decay,

whose value when the valve is almost closed is about 5% of the flow when the valve is

wide open, but they define the flow for a fully closed valve as 0. By straightforward

calculation, we find that R1(1) ≈ 1.85 · 10−4, while R1(ε) ≈ 8.570 · 10−6, and R1(0) is

defined to be zero. It is likely that this is not fully correct, as a discontinuity of that

magnitude is not common. In any event, we can model this discontinuous point by

having three constraints for three different regimes. When the valve is fully closed,
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Figure 6.3: Graph of flow against valve position for valve 1

R is 0. When the valve is at position .02 or above, R is given by the ODE above.

The interesting case is when the valve position is between 0.0 and 0.02. There we

have a constraint which says that if the valve position is between 0 and 0.02, R is in

the range [0, 10−5]. The upper end of the range for R is chosen to be just above the

calculated value of R at any point in the P ’s range for that region.

Figure 6.4 shows how we rigorously model this system for P near 0. (Note that this

figure uses the notation of our programs, while 6.3 uses the notation of Kowalewski

et al. The numbers are different, but the shapes are exactly the same.) For the

part of the curve where the equations make sense, we enclose the specified curve on

each side by the ODE describing the valve. Because the parameters of the ODE

are intervals, the value of the curve at any point is an interval. In the area where

the curve is discontinuous, we use a constraint which includes all possible values the

function could take on. This introduces some uncertainty into the formal model, but
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0.1 valve coefficent
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Figure 6.4: Graph of flow against valve position for valve 1 showing enclosure by
simple constraint (scale greatly enlarged)

that uncertainty was already present in the description of the physical system. Using

constraints makes it simple to describe that uncertainty rigorously.

6.3.2 Stepwise refinement

Ideally a modeling system allows stepwise refinement of the model. We demonstrate

this in CLP(F) by adding valves to our model of the tank flow system. Adding the

valves to the model was easy despite using a rather complex model of the valve’s

behaviour.

One problem which is rarely addressed in modeling hybrid systems is the transition

regimes as a component or valve changes state. Using constraints, we can provide a

rigorous answer by constraining the output of the component while it changes state

to be between the output it has in one state and the output it has in the other, and
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keeping that constraint for however long the component takes to change state. If

more precision is required, one can add a description of the components behaviour

during the state transition. Since the description consists of upper and lower bounds

for the component’s output, one can progressively refine the bounds as one learns

more about the component’s behaviour.

6.3.3 Rigorous Treatment of Imprecision

An important issue in modeling hybrid systems is to realize that essentially none of

the parameters are known exactly. This is true both of the parameters to the differ-

ential equations which describe the system – These parameters are often determined

by curve fitting to a set of measured points or are calculated from physical mod-

els which include simplifying abstractions, and of measurements taken by sensors in

the system – These are measured with some accuracy, which is often specified as an

error-bar. (Note that the problem of imperfect measurement is inherent in the phys-

ical world. Heisenberg’s uncertainty principle prohibits perfect measurement, and

Burridan’s principle [Lam86] further limits the speed at which one can usefully take

measurements.) Because CLP(F) treats everything as an interval, it models these

inaccuracies naturally. If a CLP(F) program shows that a system has a safety prop-

erty (proves that it avoids a region), that proof is valid even when each parameter

takes the worst possible value within the given error bars. To deal with this issue by

sensitivity analysis [sen04, Ars, Tay97] on the inputs would be extremely difficult.
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6.3.4 Dealing with Regime Change Points

One of the advantages of using CLP(F) is that one can often use one technique to

handle multiple issues. In section 6.3.1 we use separate ODEs, often with rather

simple-minded constraints to deal with regions where the physics is unclear. Here we

use a similar system to deal with non-analytic (or even discontinuous) points in an

ODE.

When the water level in the lower tank is above the input pipe (in regime above),

one set of ODEs holds, when the level is below the input pipe (in regime below),

another set of ODEs holds. We model this by having a regime change at that point.

An obvious problem arises: Our model would allow an infinite number of transitions

(each taking zero time) between the two states, and therefore never get to calculating

the change in water level which would move clearly into one state (Actually, since

CLPs are non-deterministic, there would be an infinite path and also a one-step path

out of that condition). We handle this by creating a special artificial state near

for water levels near the boundary. We then artificially put in hysteresis, so that on

leaving that middle state, one cannot immediately re-enter it. This problem is related

to the problem of Zeno automata, discussed in Section 6.5.

This example clarifies two issues, as there are two separate reasons for using near

state between above and below. The first reason is that as the water in the lower

tank reaches the level of the pipe the physics get a little unclear - what happens when

the water covers half the pipe? This issue is clearer in the case where the ODEs are

discontinuous, as in section 6.3.1. The second issue is that in order to model a change

of ODEs, we need two regimes, with appropriate transitions between them. This

issue arises even when the physics are clear, such as when one has a pipe between two
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tanks and the relative water levels in the two tanks is changing. At the point where

the water levels are equal, the ODE is non-analytic (because the square root function

is non-analytic at 0), so we would have to have a change of regimes. If the rule for a

regime change was simply that the water levels were equal, when the levels became

equal there would be a legal infinite path of zero-time changes from one regime to the

other. One could look at the derivative to know which direction the regime change

goes in, but if the water level is almost constant, the derivative will be near zero, and

the same issue is still there. To avoid this case, we artificially add hysteresis to an

already artificial regime change.

6.4 Overview of Code for Tank Flow

The complete program for the n=4 case of the tank-flow problem is in Appendix B.

Here we discuss some of the more interesting snippets from the code.

6.4.1 Evolve and Iterate

We model a hybrid system in CLP(F) by modeling a series of steps. A step begins

either at a specified initial state, or when the previous step ends, and ends when

either the length of the step (amount of time simulated) reaches a maximum step

size delta, or a change of ODEs occurs (whether caused by program control or a

regime change). The following part of the program (taken from Section B.2) is the

main code, which runs the system through one step, increments the state counter,

and continues.

evolve(S0,C,N,S2) :-
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evolve0(S0,C,N,S1),

enforce_ODEs(S1,C,S2),

copy_discrete_state(S1,S2).

evolve(S0,C,N,S2) is true if and only if the system described by C can evolve to a

boundary state S1 in N steps and then evolve from state S1 to state S2.

% evolve0(S0,C,N,S1) is true iff the system described by C can

% evolve in N steps from S0 to S1 *and* S1 is a boundary state

% (i.e. a program or regime changes at S1, or a maximum step length

% is achieved at S1)

evolve0(S0,_C,N,S1) :- {N=0},eqstate(S0,S1).

evolve0(S0,C,N,S2) :-

opt_next_step(S0,C,S1),

print(ons(S0,C,S1)),nl,nl,

{N=M+1},

evolve0(S1,C,M,S2).

A direct reading of the program is as follows: In zero steps, the system does not

change state. The evolve0 predicate says that a system can evolve from S0 to S2 if

S1 is the next step from S0, N = M + 1, and the system can evolve from S1 to S2 in

M steps. The variable C in all cases is the set of constants which describe the system

parameters.

% next_step(InitialState, ProblemConstants, FinalState)
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next_step(S0,C,S1) :-

enforce_ODEs(S0,C,S1),

find_state_change(S0,C,S1).

The call to next step states that the ODEs are followed (enforce ODEs), and

finally that system has run to an appropriate point (find state change). All the

variables in the states (S0, S1) and the constants term (C) are variables over the

reals. Variables over functions are used in enforce ODEs to specify constraints over

the real variables in S0, C, S1.

6.4.2 Finding State or Regime Changes

In each case, the step ends when any of the requirements becomes true. Figure 6.5,

taken from section B.4, shows how find state change is defined to be true when

any one of the following happen:

• One of the find flow state change predicates becomes true because the water

level in one of the tanks goes from above the input pipe in state S0 to below in

state S1, or vice versa (one of the tanks changes regime)

• one of the find valve state change predicates becomes true, because the

valve position is such that a change in regime occurs at state S1

• one of the find program state change predicates becomes true because the

program (ie. the digital part of the hybrid system) changes state at state S1

• find step change is true because state S1 is Delta time after state S0 and no

other state changes have occurred.
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find_state_change(S0,C,S1) :-
% TANK FLOW REGIME CHANGE

find_flow_state_change(r1,h1,h2,d2,C,S0,S1);
find_flow_state_change(r2,h2,h3,d3,C,S0,S1);
find_flow_state_change(r3,h3,h4,d4,C,S0,S1);

% VALVE REGIME CHANGE
find_valve_state_change(p1,vr1,vm1,C,S0,S1);
find_valve_state_change(p2,vr2,vm2,C,S0,S1);
find_valve_state_change(p3,vr3,vm3,C,S0,S1);
find_valve_state_change(p4,vr4,vm4,C,S0,S1);

% PROGRAMMED STATE CHANGES
find_program_state_change(v1,d2,C,S0,S1);
find_program_state_change(v2,d3,C,S0,S1);
find_program_state_change(v3,d4,C,S0,S1);

% no regime or state changes before the time limit is reached
find_step_size_change(S0,C,S1).

Figure 6.5: Code to Find State Changes
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The CLP(F) code to check for this (excerpted in Figure 6.5 from Section B.4)

looks rather repetitive. This is true only because in this example we use the same

behaviour for each valve and for each tank. In a less symmetric case, this code would

not grow, but there might have to be multiple versions of find ?? state change to

describe the different behaviours.

6.4.3 Enforcing ODEs

Section B.3 describes all of the analog parts of the system. It consists of three large

assertions. The first (and largest) Section B.3.1 is purely bookkeeping. All of the

ODEs are in the last two parts of enforce ODEs. In order to make the lists of

parameters smaller, we use lists to keep all variables of each type together. lookup,

evalall, and decls are helper functions defined in section B.7 to deal with the lists.

The bookkeeping section states that the individual variables correspond to what

the lists say they are, and constrains the domain and range of the functions. It uses

lookup to bind the values of constants (from C), and conditions at the start of the

step (from S0), and the end of the step (from S1) to variables. Then it uses decls

to declare several function variables (and their domains) at once, and finally specifies

which ODEs each tank should obey while in the state specified by S0. Figure 6.6

shows sections of the first part of enforce ODEs. Much of that section is repetitive, so

only representative fragments are reproduced here. We interpret the code as follows:

enforce ODEs is true if and only if all of the following elements are true (including,

of course, those that are elided here.)

• P is a vector containing P1,P2,P3,P4
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• each element of P is a function defined on [T0, T1max]

• each element of P is a function whose range is [0, 1]

• Ps0 is a vector containing P10,P20,P30,P40

• Ps1 is a vector containing P11,P21,P31,P41

• the values of Ps0 are as specified in C in state S0

• the values of Ps1 are as specified in C in state S1

• evalall each element in the list P evaluated at T0 gives the corresponding value

from Ps0, and when evaluated at T1 gives the corresponding value from Ps1

• the value of v in the list of constants C is V

• each of the valves obeys valve ODE given the valve position, velocity, and motion

regime

• each of the tanks obeys the appropriate tank ODE

Section B.3.2 handles the flow restriction caused by the valves.

valve_coef(normal,FRAC,P,E) :- {[FRAC=exp(E*((1-P))**3),

FRAC in [0,1], P in [0.01,1] ]}.

valve_coef(trans,FRAC,P,_) :- {[ FRAC in [0,0.06], P in [0,0.01] ]}.

valve_coef(shut,FRAC,P,_) :- {[FRAC=0.0*FRAC, P=0*P ]}.

valve_ODE(P,_,halted) :- {[ ddt(P,1) = 0.0*P, P in [0,1] ]}.

valve_ODE(P,V,opening) :- {[ ddt(P,1) = V+0*P, P in [0,1] ]}.
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enforce_ODEs(S0,C,S1) :-

...

% VALVE Position ODEs
% create valve position functions on [T0,T1max]

P=[P1,P2,P3,P4],
decls(P,function(T0,T1max)),

% put bounds on the range of the function
bound_functions(P,[0,1]),

% set their values at times T0 and T1
Ps0=[P10,P20,P30,P40],
Ps1=[P11,P21,P31,P41],
lookup([p1=P10,p2=P20,p3=P30,p4=P40],S0),
lookup([p1=P11,p2=P21,p3=P31,p4=P41],S1),
evalall(P,T0,Ps0), evalall(P,T1,Ps1),

% lookup the valve speed
lookup([v=V],C),

% add the ODE constraints
valve_ODE(P1,V,M1),
valve_ODE(P2,V,M2),
valve_ODE(P3,V,M3),
valve_ODE(P4,V,M4),

...

% apply the ODEs corresponding to each tank
% Ri = ode governing tank i, Di = depth in tank i,
% Fi = flow out of tank i, Hi = height of tank i,
% Pi = valve opening out of tank i, Ki = valve coefficient,
% F00 = flow into tank 1

first_tank( R1, D1,F1,D2, F00,H1,C1,FRAC1,H2,E),
middle_tank(R2, F1,D2,F2,D3, H2,C2,FRAC2,H3,E),
middle_tank(R3, F2,D3,F3,D4, H3,C3,FRAC3,H4,E),
last_tank( F3,D4,F4, C4,FRAC4).

Figure 6.6: Parts of Enforce ODEs code
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valve_ODE(P,V,closing) :- {[ ddt(P,1) = NV + 0*P, P in [0,1],

NV= - V ]}.

The ODE code is completely straightforward, as ODEs can be described directly

in CLP(F). FRAC, E, and P are all functions of T. The first line says that in the valve

regime normal,

FRAC = eE·(1−P )3 , FRAC ∈ [0, 1], P ∈ [0.01, 1]

The second line says that in valve regime trans FRAC ∈ [0, 0.06] and P ∈ [0, 0.01].

The third line says that flow through a shut valve is 0. The idiom FRAC=0.0*FRAC

is a workaround used instead of FRAC=O because CLIP does not allow functions to

be set equal to a constant. The second line of the code is needed to implement the

technique of rigorously modeling discontinuous functions discussed in section 6.3.1.

Observe that this procedure constrains P to take values inside the appropriate region

(for normal, trans, shut).

Similarly, the last three lines specify the derivative of P (the valve position) to be

0 when halted, V for opening, and -V for closing.

The last assertions in the ODE section specify the flow into and out of tanks. There

are seven cases (section B.3.3), as the first and last tanks have different configurations

than tanks in the middle, and for all but the last tank, the ODEs differ according to

which regime the tanks is (among below, near, and above) corresponding to whether

the water level in the lower tank is above or below the pipe entering the lower tank.

We consider the case of a middle tank in regime above, as that is the most complex.

middle_tank(above,F1,D2,F2,D3,H2,C2,FRAC2,H3,_E) :-
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{[F2=C2*FRAC2*psqrt(D2-D3+H), ddt(D2,1)=F1-F2, H=H2-H3,

D3 in [H,1000] ]}.

This says that given a middle tank 2 (middle tank here means that tank 2 is not

the first tank, and tank 3 is not the last tank) in regime above with the following

parameters:

F1 flow into the upper tank

D2 water height of the upper tank

F2 flow out of the upper tank (into the lower tank)

D3 water height of the lower tank

H2 height of the upper tank above sea level

C2 parameter of flow through the pipe between upper and lower tanks

FRAC2 fraction of the maximum flow the valve allows

H3 height of the lower tank above sea level

E an error term (the underscore before the E means ignore this term .)

then:

F2 = C2 · FRAC2
√

D2 − D3 + H,
dD2

dT
= F2 − F1, H = H2 − H3, D3 ∈ [H, 1000]

Here H2, C2, H3 and E are constants, and all the other variables are function vari-

ables, though that must be implied from earlier declarations. Again note that the the

constraint requires the depth D3(T) to be in the region for the above case or on the

boundary with another case.
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6.4.4 Finding State Changes

The last section of code (Section B.6) we describe in detail determines that a regime

change has occurred. Parts of this code are in Figure 6.7 and Figure 6.8. This code is

called from find state change (Section B.4), which says that find state change

is true if at least one of find flow state change, find valve state change,

find program state change or find step change, is true.

% Detection of regime change due to tank depth exceeding input
% pipe height e.g. find_flow_state_change(r2,h2,h3,d3,C,S0,S1).
% note j=i+1 here and Ri in {above,near,below}

find_flow_state_change(Ri,Hi,Hj,Dj,C,S0,S1) :-
lookup([Hi=H1,Hj=H2],C), lookup([Dj=D],S1),
update_discrete_state(Ri,R_before,R_after,S0,S1),
flow_state_change(R_before,D,R_after,H1,H2).

% We use hysteresis in our analysis to avoid an infinite loop of zero
% time state changes as it goes from near to below and back again.
flow_state_change(below,D,near,H1,H2) :-

E=0.00001, {D = H1-H2-E}.
flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2-2*E}.
flow_state_change(above,D,near,H1,H2) :-

E=0.00001, {D = H1-H2+E}.
flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2+2*E}.

Figure 6.7: Code for Regime Change as Water Level Changes

find flow state change (Figure 6.7) is true if and only if the two lookup asser-

tions are true, update discrete state is satisfied, and flow state change is satis-

fied. The lookup assertions state that the values of constants passed to the assertion

match the constants stored in C. update discrete state here states that the only
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difference in discrete variables between state S0 and state S1 is that in state S0, Ri

has value R before and in state S1, Ri has value R after.

flow state change lists the four possible transitions, and the water levels which

allow them. Note the hysteresis – to enter state near the water level has to be within

E of the critical level (H1 - H2), while to leave state near the water level has to be

2*E away from the critical level. This is to prevent an infinite sequence of zero-time

transitions when the water level is at a critical point.

Figure 6.8 shows the code for changes in the valve’s regime. find valve state change

is very similar to the code for find flow state change, except that it twice calls

update discrete state to update the two ternary variables for the two sets of

regimes a valve has. One (M) is the valve motion regime, which can be one of opening,

halted, closing, the other (R) is the valve position regime, which can be one of

shut, trans, norm. The valve position regime is necessary because of the disconti-

nuity in the valve ODEs at zero. norm means that the valve is in the regime where

the standard ODE applies, shut means that the valve is fully closed, and there is no

flow through it, and trans is the transition regime, where we simply apply a coarse

constraint because we don’t understand the physics in that regime.

6.5 Zeno hybrid systems

Johansson et al. [JELS99] introduce what they call a “Zeno phenomenon”. This is

a problem with some hybrid models in which an infinite number of steps occur in a

finite amount of time. At best, this leads to calculations which never finish, while at

worst, it leads to false proofs of safety properties in systems which don’t have those
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% check to see if valve n has hit a state change
% and if so, update the discrete part of S1 accordingly
% e.g. find_valve_state_change(p2,v2,C,S0,S1).
% v2 in {opening,closing,halted}, p2 in [0,1],
% note that this is a regime change, not a state change.
% Also, we have to handle the regime change from shut to transition
% to normal. The transisition to shut implies a transition to halted,
% but not vice versa.

find_valve_state_change(Pn,Rn,Mn,_C,S0,S1) :-
% use S2, as temp states to have 2 discreet vars change

lookup([Pn=P_before],S0),lookup([Pn=P_after],S1),
update_discrete_state(Mn,M_before,M_after,S0,S2),
update_discrete_state(Rn,R_before,R_after,S2,S1),
valve_state_change(M_before,R_before,P_before,M_after,

R_after,P_after).

% regime change rules for valve motion (and in closing case, position)
valve_state_change(opening,normal,_P_before,halted,normal,P_after) :-

{P_after=1}.
valve_state_change(closing,trans,_P_before,halted,shut,P_after) :-

{P_after=0}.

% regime change rules for valves position
valve_state_change(opening,trans,_P_before, opening,normal,P_after) :-

{P_after=0.01}.
valve_state_change(opening,normal,_P_before,constant,normal,P_after):-

{P_after=1.0}.
valve_state_change(opening, shut,_P_before, opening,trans,P_after) :-

{P_after=0.0}.
valve_state_change(closing, normal,_P_before,closing,trans,P_after) :-

{P_after=0.01}.
valve_state_change(closing,trans,_P_before, constant,shut,P_after) :-

{P_after=0.0}.

Figure 6.8: Code for Valve Regime Changes
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properties. The canonical examples of Zeno phenomena are a bouncing ball which

with each bounce achieves some fraction of the height of the previous bounce in a

fixed fraction of the time, and a water tank example discussed below. In the bouncing

ball case, a simulation would have to calculate an infinite number of bounces before

terminating unless the model included some handling of the idea that when the height

of each bounce is less than one atom’s diameter, the model must change.

Johansson et al. note that the Zeno phenomenon usually occurs as a result of over

abstraction in the model, as happens in these cases. Real systems can have valves

that chatter, but the chattering cannot involve an infinite number of state changes in

a finite time. It the real system has chatter, one should model it by a constraint giving

a minimum time for a valve to change state. The infinite chattering is an artifact

of some models, and should be removed by the modeler. Zhang et al. [ZJLS01] give

examples of cases where overly abstract models (with the Zeno property) of real

systems (without the Zeno property) lead to incorrect proofs of safety properties. In

most cases, the Zeno problem can be eliminated by a more accurate model, often

by simply modeling the time a valve or switch takes to change state. In our four

tanks example, we avoid Zeno phenomena because there is a lower bound on the time

required for twelve consecutive state changes. This bound is implied in different ways

for different sets of state changes. For example, the water flow through any pipe is

proportional to the square root of the water height, and we bound the water height

in each tank. That limit on the water flow limits how quickly the water level in any

tank can change. The only code added to avoid Zeno phenomena is the hysteresis in

Section B.6. One case in which we do not avoid Zeno phenomena is if the discrete

part of a hybrid automata describes a Zeno phenomena. If, for example, the program
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specified that at some water level a valve would switch from open to closed and from

closed to open, that behaviour would be modeled, and the simulation might never

finish. There is nothing to be done here. If a user specifies a poorly-formed program,

analysis may fail.

The water tanks example of Johansson et al. is shown in Figure 6.9. There is a

flow of water i into a valve which can direct the water into either of two tanks. Each

tank has a water level (h1, h2), and a required level (r1, r2). The safety property is

that h1 is always above r1, and h2 is always above r2. The water flow out of each

tank is proportional to the ratio of the area of the tank to the area of the output pipe,

and to the square root of the water height. If the input flow i is chosen to be larger

than either output flow o1 or o2, but less than their sum (when h1 and h2 are near

r1 and r2), it is clear that the level in at least one of the tanks must fall below its

required level. Consider the program which whenever one of tanks gets to its required

level switches the flow to that tank. As the water level gets lower, the switching will

happen more and more often, and the valve will switch an infinite number of times

in a finite period, during which time the water level in each tank will still be at or

above the required level.

6.5.1 CLP(F) and Zeno systems

How does a CLP(F) model handle a Zeno system? Consider the bouncing ball first.

If the modeler does not note that the physics change for very small bounces, the

simulation has to include an infinite number of vanishingly small bounces, but because

everything in CLP(F) is an interval, the height of the bounce will at some point reduce

to [0, S], where S is the smallest number representable in the floating point system.
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Figure 6.9: Flow system with Zeno behaviour (after Zhang et al. [ZJLS01])

CLP(F)’s non-determinism means that it should eventually explore the path where

the bounce height is 0, and the motion ends. Because CLP(F) currently uses depth-

first search, it is non-deterministic whether it will try the finite or the infinite path

at each branch. If CLP(F) were to use breadth-first search, it would clearly show the

possibility that the motion ended, while still modeling the Zeno execution as another

possibility. This is probably the best one can hope for. If one gives a computer a

model which includes a Zeno execution, the model must show that. If the model can

also show that the behaviour is within measurement (or calculation) error, one hopes

the user will realize that the initial model is insufficiently defined.
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There are two different sources of uncertainty which we model. The first is the

various problems which come from representing real numbers by some finite repre-

sentation in the computer (often floating point representation). These errors can be

handled in various ways, including the interval libraries we use, the infinite-precision

intervals of Edalat and Heckman [EH02] [Eda01], or, perhaps high precision rationals

which Henzinger et al. [HHWT97] used. One could, perhaps, also use better analysis

techniques, either by finding analytic solutions to some of the ODEs, or by better

numerical analysis proving acceptably tight bounds on the calculated solutions. In

principle, one could reduce the uncertainty from calculation to any required non-zero

limit.

The second source of uncertainty is inherent in analog systems, and that is the

measurement uncertainty. While measuring instruments are constantly improving,

they must always be imperfect because of Heisenberg’s uncertainty principle. From

Buridan’s principle [Lam86], and the requirement that measurements be made in a

sharply bounded time, we get further restrictions on the accuracy of the measure-

ments. These sources of uncertainty can not be strictly bounded. A further difficulty

in describing measurement errors is the form that those errors take. A realistic model

of a measurement device’s output is probably a normal distribution around the actual

value (possibly with a spike at all 0s or all 1s output representing a hardware failure).

While our method of calculating behaviour is rigorous given the assumption that the

distribution has no tail outside the interval, this is unlikely to be a realistic model.

All rigorous numeric models that we know of have intervals either explicitly or

implicitly, as the results often involve irrational or transcendental numbers, which

cannot be expressed exactly in floating point numbers. As many of the problems
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hybrid systems involve can not yet be solved analytically, we are left using intervals.

The two obvious ways to provide a a rigorous answer are to use intervals explicitly

and ubiquitously, as we do, or to do the calculations with floating point numbers and

then provide some numerical analysis to prove that the error-bars (interval widths)

are sufficiently narrow. That sort of analysis is quite difficult, and it seems unlikely

that a programmer approaching a hybrid system would have the training (or the time)

to do it.

7.1 Benefits of our Approach

There are several advantages to using CLP(F) to model hybrid Systems:

• CLP(F) is logic based. One can infer properties of a system from imperfect

descriptions of the system.

• One doesn’t have to completely understand a system to prove safety properties

of it. As long as one can constrain the system tightly enough, one can prove

statements about the behaviour of the system. One doesn’t have to have the

system completely specified.

• The paradigm allows simpler proofs. We can prove convergence by splitting a

region into areas, and showing that each of those areas eventually leads to a

loop.

• The system can rigorously handle non-linear ODEs.

• The semantics of CLP(F) are close to the ODEs describing the problem. The

problem specification is translated trivially into a program.
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• By making the argument for correctness of the system simpler (because the

system itself is simpler), we make it less likely that there will be an error in the

proof of correctness.

• CLIP easily answers different kinds of questions about any system it models.

Bhatia and Frazzoli [BF04] recently suggested that it would be helpful if instead

of merely saying that a system was unsafe, the analysis tool could provide

an example of the unsafe behaviour. With CLIP, one simply writes a query

asking for a violation of the safety properties. Other analysis tools seem to

require a great deal of re-working even though Parrilo [Par04] points out that

demonstrating an unsafe point is in NP, while proving there is no such point is

in co-NP, and thus harder to demonstrate.

• While CLP(F) is limited to analytic functions, it can handle points at which

a function is not analytic, as long as the function is continuous (or nearly so)

at all points. One simply writes one function for values above the non-analytic

point and another for values below that point.

There has been much work in using CLP (Constraint Logic Programming) to

analyze various aspects of hybrid systems [CF00], [Urb96], [Pod00], [GJS96] . One

problem with these conventional CLP approaches to modeling hybrid systems is that

they must deal with the ODEs describing the continuous part of the system using some

sort of approximation, such as discretization into difference equations or restriction

to ODEs that have a closed form solution. This introduces a “modeling error” so

that the systems are not computationally sound. One must then reason about the

modeling error outside of the CLP program. Many systems ignore these errors, and
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leave it up to the user to understand the numerical instabilities. For example, the

SHIFT language [DGS] is very expressive, but it solves non-linear ODEs by using a

fourth order Runge-Kutta algorithm without bounding the error term, and hence is

not rigorous. This sort of numerical analysis [Act96] is very tricky. To require users

to understand numerical analysis under pain of getting a wrong answer is to invite

error.

Sensitivity analysis of hybrid systems is even more difficult than sensitivity analy-

sis normally is. In 1999, Galán, Feehery and Barton [GFB99] gave the first technique

for explicitly doing sensitivity analysis on hybrid systems. They have extended this

work in later work [BL02], but it remains difficult. Because we use intervals ubiq-

uitously, the inputs are given as intervals, so we automatically include the errors

stemming from different possible values. Barton et al’s techniques allow one to find

out whether a wide output interval results from sensitivity to a particular input, or

from performance problems in the calculation.

7.2 Limitations of CLP(F)

The primary disadvantage of the CLP(F) approach is that it is very resource intensive

and hence can not currently model systems over a long modeling period.

The wrapping problem [MA85] is that in multi-dimensional interval arithmetic,

the interval is always an n-dimensional rectangle (a hyper-cube). This rectangle

is often much larger than the minimum volume shape to cover all possible values.

This excessive over-approximation can make true statements unprovable in CLP(F).

CLP(F) makes no attempt to handle the wrapping problem, other than the simple
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minded solution technique of dividing each rectangle into smaller pieces, exacerbating

the performance problems. Wrapping is a problem for CLP(F), as it is for almost any

interval arithmetic approach to ODEs. A good approach to the wrapping problem

might reduce both the width of resulting intervals and the time it takes to compute

them, at some cost in the complexity of the program used. There has been some

work on the wrapping problem with ODEs, including Stauning’s [Sta96] implemen-

tation of Lohner’s [Loh87] algorithms and Deville, Janssen, and van Hentenryck’s

work [DJvH02] on consistency techniques for ODEs

Perhaps the main problem with using CLP(F) to model hybrid systems is that

CLP(F) can be extremely computationally intensive. There are two related measures

of performance for an interval based system, time and width of result intervals. One

can almost always speed up a computation by allowing wider result intervals, and one

can sometimes narrow the result intervals by allowing more computation. We have

not yet worked on improving the efficiency of CLP(F), but from a few examples, it’s

clear that careful (or lucky) setting of its tuning parameters can sometimes cut the

run time by a factor of two or three while giving equally narrow result intervals.

A major limitation of CLP(F) that it can only handle ODEs, and not PDEs

(Partial Differential Equations). Mitchell, Bayen, and Tomlin [MBT01] and Tomlin,

Lygeros and Sastry [TLS00] describe systems which can handle PDEs in hybrid system

descriptions, but only very approximately.
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7.3 Future Work

One of the major benefits of this approach is that the problem of analyzing the

hybrid system is transformed into the problem of analyzing the corresponding CLP(F)

program. In principle, one should be able to apply well understood program analysis

techniques [SH90, HS91, HC88] to CLP(F) and directly infer provable properties of

the corresponding hybrid system. In this thesis we describe only the simpler types of

analysis that one can do by directly solving CLP(F) constraints related to the hybrid

system.

Fehnker and Ivančić [FI04] recently published a set of benchmark systems to test

hybrid models on. It would be worth while to see what CLP(F) does with those

problems. Unfortunately, two of their three families of benchmarks are linear, and

the third has only a square root as a non-linear component. Since CLIP handles

rather more general ODEs, it would be nice to have a benchmark to see how well it

does on them.

Like this work, Janssen, Van Hentenryck, and Deville [JvHD02] apply constraint

techniques to ODEs. While we use a straightforward Interval-Constraint ODE solver

in an applied way, they show that added sophistication in the solver can result in sig-

nificant performance increases. Since performance is always a problem with constraint

solvers, it would be worthwhile to apply their techniques to our system.

There is now work using hybrid systems in biology [BFH+04, LT04, Neo04]. Most

of this is attempting to model systems starting from scratch. CLIP based hybrid

system analysis seems particularly well suited for work like that of Prinz, Billimoria,

and Marder [PBM03] who know the connections in the system, and want to calculate

the parameters. They generate a database of simulated behaviours for varying values
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of the parameters. A rigorous approach here might increase the reliability of the data.

Using CLP(F) to model hybrid systems currently requires a lot of knowledge

about how CLP(F) works in order to know which solver to use when. Validated

constraint compilation [HW99a] is a technique which allows the user to be ignorant

of the different solvers, while still getting acceptable performance (both in terms of

the width of result interval and in terms of computer time needed). It clearly needs

more work, and integrating it with hybrid systems models has yet to be done, but

both are in CLP(F), so combining them shouldn’t be too difficult.



Appendix A

CLIP Documentation

This appendix contains a draft of what will become a CLIP manual [WH04]. This

version is current as of the date this document was formatted (May 5, 2004). As this

is still a very rough version, check to see if a later version is available.

113
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This is a start at documenting CLIP. Eventually this will grow into a manual.

CLP(I) (Constraint Logic Programming over Intervals) is a constraint logic program-

ming (CLP) language whose domain is the real numbers (Moore’s Interval Arith-

metic). CLP(F) is a CLP language whose domain is analytic functions over the

reals. CLP(F) is written in CLP(I). CLIP is an implementation of CLP(I). Current

distributions of CLIP include the file ode.pl, which implements CLP(F) in CLP(I).
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A.1 Introduction

CLP(I) is an interval-based constraint logic programming (CLP) language whose do-

main is the set of real numbers. The class of CLP languages (and their syntax and

semantics) was introduced by Jaffar and Lassez in 1987 [JL87]. Jaffar and Maher

provide an excellent survey [JM94] of the fundamental concepts of CLP. The idea of

calculating over intervals of reals comes from Moore’s 1966 book on Interval Arith-

metic [Moo66].

The idea of combining CLP and Interval Arithmetic was first conceived by Cleary

[Cle87] but the first production quality CLP(I) interpreter was the BNRProlog sys-

tem developed by Older, Vellino, and Benhamou [Res88], [BO97],[OV93]. BNR Prolog

was designed to be verifiably correct in the sense that the intervals it returned were

mathematically guaranteed to contain all solutions to the underlying arithmetic con-

straints. The system however was proprietary and the underlying algorithms were

never published in the scientific literature.

CLIP was originally developed as an open source implementation of CLP(I) by

Qun Ju and Tim Hickey [HJ], [HJ97] and was used in Qun Ju’s thesis [Ju98] as

the foundation for a parallel implementation of CLP(I). CLIP has subsequently been

extended by Tim Hickey, who added the CLP(F) language, which provides constraints

over functions, plotting, and some other refinements. David Wittenberg has made

minor changes and fixed some bugs.

CLIP is built on top of Prolog [Pro95], [DEDC96], and currently runs on GNU

Prolog [Dia02] and ALS Prolog. The fundamental philosophy is to have a relatively

small base of sound primitive constraint contractors which are simple enough so that

one can argue convincingly, if not formally prove, that they are correct, and then
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build more complex solvers on top of the proven system. Since the complex solvers

built on CLIP primitives are made up of sound simple solvers, they are also sound.

An important feature of CLP languages is that they are theorem provers, so that each

answer generated by a CLP program has a direct interpretation as a theorem about

the underlying domain.

In CLIP, introducing new constraints is usually a matter of narrowing the interval

corresponding to one or more variables. A poor choice of order of contractions will

result in poor performance (either by taking a long time or by providing very loose

bounds), but will not result in an unsound computation. Writing more complex

solvers directly results in systems which are more complex, which makes it harder to

construct a direct argument for their correctness.

CLIP currently runs on Linux on x386 architectures and Mac OS X on PPC

architecture, using IEEE754 floating point [IEE85] using the “double” (64 bit) word

length. Porting to other architectures should be simple, but using a larger floating

point word would take a lot of (straightforward) work.

CLIP is an extension to Prolog, so all commands available in Prolog are available

in CLIP. Prolog commands are distinguished from CLP(I) commands by the brackets

used to enclose them. CLIP commands are written { command }. CLP(I) itself can

then be extended.

The CLP(F) [Hic00a] [Hic01] language introduces function variables in addition to

real variables and has proved to be a useful tool for studying systems defined partly by

ODEs (Ordinary Differential Equations). The CLP(F) extensions are now a standard

part of CLIP. (It is implemented as a metalevel interpreter in the CLP(I) language.)

Constraints on functions and their derivatives are written {[ C1,C2,...,Cn ]}. This
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document describes CLIP, which implements CLP(I) and CLP(F). We attempt to

label CLP(F) extensions as such. Two other extensions are also described – plotting.pl

and solve.pl

CLIP can be considered to be a constraint engine over intervals and functions

which interfaces to the Prolog engine (a constraint solver over general finite domains).

The CLP(F) language solves analytic constraints by soundly approximating suffi-

ciently differentiable functions by power series with remainder terms and introducing

arithmetic constraints among the Taylor coefficients of the functions at the endpoints,

at points in the interval, and over the entire range.

CLIP follows the Prolog convention of using lower case identifiers for atoms and

upper case for variables.

Note that CLIP follows the US convention of using a period to represent the

decimal point, so that one tenth is written 0.1

This manual documents the most important features of CLIP, but currently omits

a few features including vectors in CLP(F), the extended syntax for input constants

in CLP(I), and the plotting libraries.

A.2 Using CLIP

In CLP(F) the constraint domain allows one to declare variables representing various

analytic values including:

• real numbers, X

• infinitely differentiable functions, F, on a finite interval [a,b]

• vectors of numbers, functions, or vectors
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The CLP(I) constraint language allows one to express any algebraic equality or

inequality constraint among its variables. For example, the query:

| ?- {X^2=2,X>0}.

returns

X = 1.41421356237309... ? ;

no

| ?-

The CLIP interpreter represents the interval for X in a compact form. The ellipsis

“...” indicates that all shown digits are correct and hence X must lie in the interval:

[1.41421356237309,

1.41421356237310)

Also, note the standard Prolog feature that the user entered a semi-colon after the

solution and the interpreter responded with “no” which indicates that there are no

more solutions.

A.2.1 Multiple Solutions and Non-determinism

Sometimes there may be more than one solution to a given constraint. The constraint

solver will indicate this by returning an interval that contains all solutions:

| ?- {X^2=2}.

X = [-1.41421356237309536751922678377,

1.41421356237309536751922678377] ?
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no

| ?-

The user must guess whether this is because the system has failed to narrow the

interval around one solution or if this is a case where there are multiple solutions.

Hickey and Wittenberg [HW99a] discuss methods of determining which is the case,

and choosing an appropriate method to use in solve clip, but this work is clearly

incomplete. There is a moderately sophisticated solver solve clip(METHOD,VARS,N)

which allows one to specify the solving method, (See section A.7.1 for a list of sup-

ported solving methods, and a description of each of them.) the list of variables that

should be solved, and a parameter N representing how much work should be done

(e.g. a maximum allowed width for intervals, or a maximum depth for a divide and

conquer splitting routine).

Here, to find the discrete set of solutions one must apply a divide-and-conquer

approach where one divides the interval into subintervals and searches for solutions

in each one. This is done using the “queue” method of the solve clip solver and

typing a semicolon after each solution that it finds:

| ?- {X^2=2},solve_clip(queue,[X],0.000001).

X = 1.41421356237309... ? ;

X = -1.41421356237309... ?

(10 ms) no

| ?-

The ”no” answer at the end indicates that there are no more solutions to that query.

The constraint language for real variables allows any equations and inequalities

constructed using the arithmetic operators and the standard mathematical functions
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(sin, cos, tan, asin, acos, atan, exp (ex), log, exponentiation, integral powers XY , and

others).

For example, the following query demonstrates the use of the forward checking

solver fwchk, which divides the domain into a set of K boxes (initially K = 1) and in

each step it divides each box into 2V sub-boxes, where V is the number of variables

in VARS, and applies the default narrowing procedure. Any boxes that are proved

to contain no solutions are discarded and the result is returned as the smallest box

containing all of the remaining boxes. An example of the narrowing done by this

method to solve xx = 1 + cos(x) ∧ x > 0 is:

| ?- {X**X = 1+cos(X), X>0},solve_clip(fwchk,[X],N).

N = 0 X = REAL(0,inf) ? ;

N = 1 X = 1.247504654353... ? ;

N = 2 X = 1.24750465435333... ? ;

N = 3 X = 1.24750465435333... ?

(1720 ms) yes

| ?-

Here N is the number of steps taken.

A.2.2 Analytic constraints and ODEs

CLP(F) also allows one to constrain functions by functional equations involving many

of the same arithmetic operators and mathematical functions as CLP(I) supports. In

addition, one can constrain a function or its derivatives to take specific values at

specific points and to have a range that lies within an interval.
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Consider the following mathematical constraint Q on the function variable F and

real variables A and E:

Q(F,A,E) ≡

(F ∈ H([0, 1]), F ′ = F, F ([0, 1]) ⊆ [−100, 100], F (0) = 1, F (A) = 2, F (1) = E)

Q can be represented and solved by presenting the following constraint to the CLP(F)

interpreter:

| ?- type([F],function(0,1)), {[ ddt(F,1)=F, F in [-100,100],

eval(F,0)=1,eval(F,A)=2, eval(F,1)=E ]}.

where the type predicate indicates that F ∈ H([0, 1]), i.e., F is an analytic function

in some open neighborhood of the interval [0, 1]. The output given by CLP(F) after

0.76 seconds on a 1 GHZ Mac TiBook is

A = 0.6931471... E = 2.7182818... ;

(760 ms) no

| ?-

which represents the following answer constraint:

C(F,A,E) ≡ (A ∈ [0.6931471, 0.6931472) ∧ E ∈ [2.7182818, 2.7182819))

The soundness of the CLIP interpreter implies that it has proven a theorem about

the query and its solution constraint:

∀F,A,E Q(F,A,E) ⇒ C(F,A,E)
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Q(a, b, c, d, k1, k2, k3, k4, t1, t2) ≡
∃f1, f2 I = [t0, t1], f1, f2 ∈ H([t1, t2]),

E = 0.0000000001, k3 < x20,

f ′
1 = k1 − k2

√
f1 − f2 + k3

f ′
2 = k2

√
f1 − f2 + k3 − k4

√
f2

f1(t0) = a, f1(t1) = b, f2(t0) = c, f2(t1) = d,

f1([t1, t2]) ⊆ [E, 1000], f2([t1, t2]) ⊆ [E, 1000],

Figure A.1: A complex non-linear ODE constraint

In other words, if F , A, and E represent a solution to Q, then they must satisfy the

answer constraint C. Note that one cannot infer from this theorem that Q has any

solutions at all. In this particular case, Q clearly does have a solution

F (t) = exp(t), A = ln(2), E = e

which of course satisfies the answer constraint C.

The function F is then constrained to be equal to its first derivative, and to take

the value 1 at 0 and to take values in [−1000, 1000] for all x ∈ [0, 1]. The variables

A and E are not declared to be functions and hence are real constants by default.

They are constrained so that F (A) = 2 and F (1) = E. The constraint solver finds

A and E to 7 decimal digits of precision and also finds an interval for F not shown

here, that specifies intervals for its first 10 derivatives at 0 and 1, and for the range

of its first 10 derivatives over [0, 1]. The number of derivatives (10) can be set to any

value N (but space and time complexity grows quadratically with N).
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A.2.3 Complex ODEs

The CLP(F) solver can also handle very complex non-linear differential equations

as it based on a “brute force” reduction of the analytic constraints into arithmetic

constraints which are solved with a simple interval arithmetic constraint solver. For

example, we [HW03] model a system consisting of a fluid with temperature A(t) which

is heated by a heating element whose temperature B(t) has a non-linear component

sin(B(t)) in its defining ODE. This system is modeled by the following procedure:

ode2((T0,A0),[I,[Alpha,Beta,Gamma,Delta]],A,(T1,A1)) :-

type([A,B],function(0,I)),

{[ ddt(A,1) = Alpha * A + Beta + Gamma*B,

ddt(B,1) = Delta*(B + 0.1*sin(B)),

eval(A,0)=A0, eval(A,T)=A1,

eval(B,0)=1,

A in [-1.0E100,1.0E100],

B in [-1.0E100,1.0E100],

T=T1-T0, T in [0,I]

]}.

A.3 General Theory of CLP Constraint Domains

A CLP Constraint domain D is specified by giving the syntax and semantics of its

underlying constraint language.

Syntactically, constraints in a domain D are a conjunction of atomic formulas in

a first order language LD. The language is specified by giving the predicate symbols,
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function symbols, constant symbols, and variable symbols of the language. (In general

the language may require a multi-sorted logic to cleanly handle variables of different

types.)

The semantics for a CLP Constraint domain is given by a specific model φD for

the language LD, i.e., a concrete interpretation of the predicate, function, constant,

and variable symbols. So φD is a map from the symbols to a corresponding set of

predicates, function, and constants. The theory TD of the domain is the set of all

first order formulas in LD which are true under the interpreteration φD.

A CLP Constraint solver is an algorithm which tests for unsatisfiability of con-

straints. It must be correct, but it doesn’t have to be complete, i.e. for any constraint

C the solver either determines that the constraint is unsatisfiable, or it makes no claim

about the constraint’s satisfiability. Thus, if the solver determines that a constraint

C(X) is unsatisfiable, then there is a proof that

TD |= ¬∃X C(X)

but the solver might not be able to detect all unsatisfiable constraints.

An interval constraint solver approximates the solution set for a constraint by

assigning an interval to each variable in the constraint. For the purpose of this

section, we can think of an interval for a general domain to a subset of the domain

(possibly with some additional restrictions).

An interval constraint solver proves unsatisfiability by applying contraction algo-

rithms which attempt to shrink the intervals without removing any solutions. If an

interval for one of the variables is shrunk to the empty set, then the constraint is
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unsatisfiable. In general if an interval constraint solver is given a constraint C(X)

on a tuple X of variables and it contracts the variables from an initial tuple I to a

subset J , then one can infer that

TD |= ∀X. (C(X) ∧ X ∈ I) ⇒ X ∈ J

That is, the contraction algorithms can be viewed as mechanical theorem provers for

a simple class of formulas and hence the CLP constraint solver is itself a theorem

prover.

A CLP(D) program P can be interpreted as a first order theory TP using Clark’s

completion semantics [Cla78]. In this semantics, each predicate in the program is

replaced by a rule

∀Xp(X) ⇔ (∃Y1q1(X,Y1)) ∧ . . .

where each clause of the program is viewed as a conjunction q1 of atomic formulas over

the variables X from the head and some new variables Y introduced in the clause. If

a CLP(D) interpreter generates m interval solutions I1, . . . , Im to a query Q(X) then

one can infer that the interpreter has produced a proof that

TD ∪ TP |= ∀X.Q(X) ⇒
∨

j

X ∈ Ij

For example, let P is the following CLP(D) program over the domain D of reals:

p(X,Y,N) :- {N=0,Y=cos(Z),exp(Z+Y)=X}.

p(X,Y,N) :- {N>0, M=N-1, Y= exp(Y)+cos(Y1)},p(X,Y1,M).
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then its Clark semantics is

∀X,Y,N.p(X,Y,N) ⇔ ∃Z(N = 0 ∧ Y = cos(Z) ∧ eZ+Y = X)

∨ (N > 0 ∧ M = N − 1 ∧ Y = eY + cos(Y1) ∧ p(X,Y 1,M))

In the next two sections we discuss the syntax and semantics of the CLP(I) and

CLP(F) languages.

A.4 How Clip Works

CLIP maintains a dequeue (double ended queue) of active constraints as well as a

stack of all constraints, a stack of interval-valued variables and some other control

structures to handle backtracking (a stack of choice points, a trail of bindings).

After a new constraint is added to the constraint stack and enqueued in the

dequeue, the solver iteratively processes constraints in the dequeue and applies a

contractor for that constraint to attempt to narrow (shrink, contract, ...) some of

the intervals in the variable stack without removing any solutions to the constraint

in question.

If the narrowing results in a variable X being contracted by more than some

fixed amount specified by the tuning parameter sensitivity, then all constraints

involving X are put on the dequeue. If the change to a X was more than the tuning

parameter stack sensitivity, the constraints are added to the front of the dequeue

(i.e. pushed), otherwise they are added to the end (i.e. enqueued). CLIP does not

add a constraint to the dequeue if it is already there.

CLIP continues to narrow intervals until the dequeue is empty. A naive imple-
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mentation of this solver would be subject to freezing up when the solver enters a

cycle of making very small changes to a set of variables with neglible progress (as

measured in the decrease in the total size of the interval). To eliminate this problem

(and guarantee a maximum return time for each call to the constraint solver), CLIP

introduces the max narrow tuning parameter. Once max narrow operations occurred,

CLIP continues narrowing, but only puts constraints on the dequeue if the change

in the one of the variables in the constraint is more than the insensitivity tuning

parameter. Note that sensitivity, stack sensitivity and insensitivity are

relative, not absolute changes, and all of these parameters can be modified inside clip

using set clip. Also, the precise semantics of these parameters is tricky since they

must apply to bounded intervals as well as those where one endpoint is infinite.

A.5 The CLP(I) Constraint Domain

The CLP(I) constraint language defines a constraint as a conjunction of atomic for-

mulas in the language specified below. Constraints in CLP(I) are enclosed with curly

braces to indicate that they are to be processed by the constraint solver and not the

usual Prolog engine. Thus, all CLP(I) constraints have the form:

{C1, C2, . . . , Cn}

where the Ci are atomic constraints.

The CLP(I) constants include the standard representations of decimal numbers

and the semantics of a CLP(I) constant is somewhat complex. If the decimal number

constant c is in fact exactly representable by a floating point number f , then the the
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CLP(I) semantics assigns the symbol c to the value f . For decimal number symbols c

without an exact floating point representation, there are two floating point numbers f0

and f1 such that f0 < c < f1 and the semantics of CLP(I) maps c to some unspecified

number strictly between f0 and f1. Note that in this case, syntactic constants are

actually represented by slightly constrained variables.

CLP(I) variables are represented by capitalized identifiers (as in Prolog) and cor-

respond to real numbers under the CLP(I) model.

The integers are naturally embedded in the reals and we identify the booleans

with the subset {0, 1} with 0 being false and 1 being true. Thus, integer(X) is true

iff X is an integer and boolean(X) is true if and only if X is 0 or 1. We could actually

define these in terms of the other constraints:

integer(X) ≡ sin2π(X/2) = 0 boolean(X) ≡ integer(X) ∧ X ∈ [0, 1]

CLP(I) has a very rich language of functions which include those shown in Ta-

ble A.2.

The atomic constraints CLP(I) constraints are constructed from the predicates in

Table A.1. These represent the usual predicates on reals, with one exception – the

“in” predicate, which we discuss in more detail below.

The usual use of the “in” predicate is X in [A,B] which has the meaning A ≤ X

and X ≤ B One can get a reasonable semantics for X in Y where Y is a real

variable or expression by using the domain of real-valued functions on an unspecified

set S instead of the domain of real numbers. The real numbers a are embedded in

this domain as constant functions fa with ∀t.fa(t) = a and the F in G relation is



A.5. THE CLP(I) CONSTRAINT DOMAIN 129

interpreted as range inclusion F (S) ⊆ G(S). The real operators are extended to

functions using a pointwise semantics: (F ◦ G)(t) = F (t) ◦ G(t). Since the reals are

embedded in this function space, one can introduce a type system with both real

and function variables. This semantics plays a central role in the CLP(F) constraint

domain described in the next section.

Symbol Arrity Pos Description

S = T 2 In equals
S < T 2 In less than
S =< T 2 In less than or equal
S >= T 2 In greater than or equal
S\==T 2 In not equals
integer(T ) 1 Integer
boolean(T ) 1 Boolean
S in T 2 In Containment

Table A.1: CLP(I) constraint predicates where S and T are CLP(I) constraint terms
Pos is “In” for infix operators.

Note that the <, ≤, = are functions as well as predicates. As function they return

0 or 1 and so you can write

(X<1) + (Y< 1) + (Z<1) = 2

to represent the constraint that exactly two of the three variables X,Y, Z are smaller

than 1.
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Symbol Arrity Pos Description

S + T 2 In addition
S ∗ T 2 In multiplication
S − T 1 unary minus
exp(T ) 1 eT

sq(T ) 1 square
abs(T ) 1 absolute value
sgn(T ) 1 sign of argument, -1, 0, or 1
max(S, T ) 2 Maximum
min(S, T ) 2 Minimum
floor(T ) 1 Floor
ceil(T ) 1 Ceiling
S or T 2 In Logical OR (and S,T are boolean, i.e. in {0,1}
S and T 2 In Logical AND (and S,T are boolean)
S xor T 2 In Logical eXclusive OR (and S,T are boolean)
S not T 1 Logical Negation (and T is in {0,1}
sin(T ) 1 Sine
cos(T ) 1 Cosine
tan(T ) 1 Tangent
S < T 2 Less than function mapping to {0,1}
S ≤ T 2 Less than or equals function
S = T 2 Equals function
sin2pi(T ) 1 returns sin(2 · π · X)
cos2pi(T ) 1 returns cos(2 · π · X)
tan2pi(T ) 1 returns tan(2 · π · X)
evenpow(S, T ) 2 if S > 0, ST ; if S = 0, 0; if S < 0, (−S)T

oddpow(S, T ) 2 if S > 0, ST ; if S = 00; if S < 0, −(−S)T

psqrt(T) 2 the positive squareroot of T

Table A.2: Clip functions
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A.6 The CLP(F) Constraint Domain

Constraints in CLP(F) all have the form

{[C1, C2, . . . , Cn]}

where the Ci are atomic CLP(F) constraints. The variables that appear in CLP(F)

constraints are of two types. Either they are real variables (as in CLP(I) constraints)

which represent real numbers or they are function variables which represent infinitely

differentiable functions defined on a finite interval [a, b].

The function variables must be declared outside of the CLP(F) constraint. They

are declared used using a CLP(F) declaration as follows:

decls([F1,...,Fn],function(A,B))

This states the the Fi are infinitely differentiable functions in an open set containing

the interval [A,B].

Atomic CLP(F) constraints include all CLP(I) constraints on real variables and

in addition include the following, where F,G are expressions of type function and

S, T are expressions of type real. The list of functions available in CLP(F) includes

all CLP(I) functions on reals and add the operators in Table A.4. Note that when

functions and reals are combined (as in F + X) the result is a function obtained by

interpreting the real value as a constant function.

There are also a few tuning parameters and printing procedures CLP(F) adds:

set degree(N) sets to N (default 10) the degree of the Taylor approximation

polynomial used for functions.
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Symbol Arrity Pos Description

F = G 2 In equality of functions
F = T 2 In function F is the constant function T
T = F 2 In function F is the constant function T
S = T 2 In real numbers S and T are equal
identity(F ) 1 F is the identity function
F ≤ G 2 In F (t) ≤ G(t) for all t ∈ [A,B]
F in T 2 In F ([A,B]) ⊆ T
F in G 2 In F ([A,B]) ⊆ G([A,B])

Table A.3: CLP(I) constraint predicates where F,G are functions and S, T are reals

Symbol Arrity Pos Description

F + G,F + T, T + F 2 In addition
F ∗ G,F ∗ T, T ∗ F 2 In multiplication
F − G,F − T, T − F 1 subtraction
F/G, F/T, T/F 1 division
exp(F ) 1 eF (t)

log(F ) 1 log(F (t))
sin(F ) 1 sin(F (t))
cos(F ) 1 cos(F (t))
tan(F ) 1 tan(F (t))
ddt(F, n) 2 nth derivative of F , n an integer constant
eval(F, T ) 2 F (T )

Table A.4: CLP(F) functions
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print ps clip/1 prints the power series of its argument (defined in ode.pl)

A.7 CLIP Predicates and Commands

CLIP is an extension of GNU Prolog in which several new predicates have been added

to the base system. The most important of these new predicates are the constraint

predicates for CLP(I) – { } and {[ ]} and decls. The other predicates are mostly

commands that allow one to interact with the constraint engine – getting/setting

tuning parameters and other information stored in the constraint engine. They don’t

affect the logical semantics of the program, but they may affect the performance.

The basic predicates and commands in CLIP are described in section A.10.

A.7.1 Command Descriptions

’$INT’(I) refers to the interval variable whose index in the constraint engine is I.

• { }/1 takes the included list of constraints and does as much narrowing as

it can.

• {[ ]}/1 takes the included list of function constraints and adds them to the

current constraints (defined in ode.pl)

• help clip/0 prints a list of available commands.

• set cp clip/0 sets a choice point in the constraint engine.

• print clip/1 prints its argument as an interval rather than as an index into

the constraint engines variable stack.
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• reset clip/0 sets clip to its original state. In particular, it clears the dequeue.

Dequeue usage can be a problem on certain calculations. Note that reset clip

does not change the values which have been set with set clip.

• get bounds clip/3 (Var, Lo, Hi) returns the bounds of interval Var in Lo and

Hi. This only works on variables which are bound to an interval. For variables

which are not bound, use ’$INT’(Num) where Num is the index in the constraint

engine of the interval variable.

• get hex bounds clip/3 gets the bounds as two hex numbers

• get bit bounds clip/3 gets the bounds as two bit strings (represented as 4

unsigned shorts).

• dump clip/1 provides information on CLIP’s state. dump clip(stats) gives

statistics: number of choice points, number of constraints, value of maxcon,

number of variables, value of maxvar, value of conbot, value of trail, var dep,

narrows, changes, and big changes.

dump clip(all) lists all the state information it has, which includes stats, and

also gives information on each variable, including its type, range, and the last

change to it.

It lists the active constraints and variables (Note that constants are variables

whose numbers start at 99999 and go down, variables start at 0 and go up) and

choice points.

It then provides statistics on CLIP’s state: the number of choice points (essen-

tially the number of vertices in the tree of execution), the number of constraints
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active (con), the maximum number of constraints (maxcon) at any one time, the

bottom of the constant storage area (conbot), the number of narrowing opera-

tions performed so far (narrows), the number of primitive narrowing operations

(prim), the number of times an interval changed (changes), and the number of

times an interval changed by more than 10% (big changes).

!!! what other arguments does it take??

The values described by dump clip can all be reset by reset clip.

• set clip/2 (Var, Val) is used to set the control variable Var to Val. Note

that variables that can take non-integer numbers must have at least one digit

before and at least one digit after the decimal point. Values which can be set

are

– accuracy (default: 0.0001) is the minimum interval size. A variable whose

size is less than accuracy is not requeued for more narrowing.

– sensitivity (default: 0.05) The minimum change to an interval which will

cause CLIP to put that interval back on the stack of intervals to narrow

further (until max narrow narrowings have occured). sensitivity can

safely be set to 0.0 so that any change in an interval will cause the interval

to be requeued. Note that sensitivity is a fraction, not an absolute

number.

– max narrow default: (10 000) - the maximum number of narrowings using

sensitivity to determine whether to continue narrowing (used to prevent

infinite loops). After max narrow steps, CLIP will only add an interval to

the stack of work remaining if the change was greater than insensitivity.
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insensitivity should be significantly greater than sensitivity. Note

that sensitivity is a fraction, not an absolute number.

– insensitivity (default: 0.125) The minimum change necessary to re-

queue an interval after max narrow narrowings have been done. Note that

insensitivity is a fraction, not an absolute number.

– narrow debug boolean. (default: false) causes CLIP to show the value

of the interval being narrowed before and after each narrowing operation.

This generates an enormous amount of data, so it’s only useful for debug-

ging relatively small programs.

– finite bounds boolean. (default: false) determines whether new variables

should have finite or [ – maxreal, + maxreal] bounds.

– stack sensitivity (default: 0.25) If an interval is narrowed by more than

stack sensitivity, then it is put on the front of the dequeue to be re-

narrowed immediately. If the fraction the interval was narrowed by was

by less than stack sensitivity, but more than sensitivity, it is put

on the end of the dequeue. If the change is less than sensitivity, it is

not requeued. Note that stack sensitivity is a fraction, not an absolute

number.

• get clip/2 is used to read the control values which set clip can set as well as

some state description. A useful idiom is get clip (A,B), write(A=B),nl,

fail. This gets all the parameters, writes the name and value of one, writes

a new line, then gets the next value. Some values which can be checked with

get clip, but not set with set clip are:
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– var top initial value: 1

– constraint top initial value: 0

– constant top initial value: 99 999

– max vars default 100 000

• plot2 solve(M,[X,Y],E,F) (defined in plot.pl)

• fplot([X,Y],E,F) generates GNUPLOT dataset from 2D constraints

• fplot([X,Y,Z],E,F)

• plot3 solve(M,[X,Y,Z],E,F) generates 3dvplot datasets from 2D constraints.

• plot param([X,Y,Z],Params,E,F)

• narrow all clip(N) Adds all constraints to the dequeue, and them performs

N narrowing operations.

• absolve(L,S,F) Tries to narrow an interval by checking to see if there are any

solutions near the bottom of the interval. If not, it removes the bottom section

of the interval. This is repeated until removing a piece of that size from the

bottom of the interval would remove an area in which there are solutions. It

then does the same for the top of the interval. L is a list of intervals to test, (S,

F ) give the starting and ending sizes of the piece to check. If F is less than S,

it does nothing. Absolve starts by checking for solutions in a piece of size 1/S

times the size of the original interval and reduces the size of the piece by half

until it reaches one of size 1/F . By convention S and F are powers of 2.
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absolve prints characters to show its progress. “-” means that it succesfully

removed a piece from the low end of the interval “,” that it failed to remove

a piece from the low end of the interval “+” that it removed a piece from the

high end of the interval “;” that it failed to remove a piece from the high end

of the interval Whenever it finishes absolving 1 interval, it prints “*”

• contract vars(Vs, G) solves the given constraints (Vs) for the goal G, and

then cleans the stack of all the temporary constraints used. All the variables in

Vs must be intervals. Returns the union of the solutions. Defined in contract.pl

• solve clip(Solver, Term, Eps) Legal solvers are:

– queue Splits each variable which is too large, then continues going through

the list splitting each variable once per time until all the variables are small

enough.

– fwchk (Forward Checking Solver) A divide and conquer solver which di-

vides the domain into a set of K boxes (initially K = 1) and in each step

it divides each box into 2V sub-boxes, where V is the number of variables

in VARS, and applies the default narrowing procedure. Any boxes that are

proved to contain no solutions are discarded and the result is returned as

the smallest box containing all of the remaining boxes.

– seq this traverse a search space by putting the variables into a queue and

sequentially splitting the top variable in the queue and the moving in to

the back of the queue

– incr – this does a breadth first search (like fwchk) of the solution space, but

after each breadth-first splitting it reports on each connected component
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of the solution space before going deeper.

– bf

Term is the set of variables to work on, and Eps is a work parameter, whose

meaning varies according to which solver is used.

• solve clip(Term, Eps) Calls solve clip/3 using queue as the solver.

• decls/2

• print ps/1 prints the power series of its argument by showing the endpoints

a, b of the interval I = [a, b] is defined on as well as the values of its first n

derivatives at a at b and on the interval I.

A.8 Implementation

In this section we give a brief overview of how the CLP(I) and CLP(F) constraint

solvers are implemented.

A.8.1 CLP(I) constraint solving

The CLP(I) constraint solver is based on a relatively simple model. At any point in

time the set of constraints that have been encountered in the current branch of the

Prolog search tree are stored in a stack of primitive constraints called the constraint

store. Each new constraint that is added to the system is decomposed into a con-

junction of primitive constraints and these constraints are added to the constraint

store and the variables that appear in the constraint are pushed onto a stack of in-
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terval variables. These new primitive constraints are also put into a queue of active

constraints.

The constraint solver then attempts to contract the intervals in the interval vari-

able stack by processing the constraints in the constraint queue. If one of the con-

straints in the queue becomes unsolvable (i.e. an interval contracts to the empty

set), then backtracking is triggered as the solver has proved that the current set of

constraints is unsatisfiable.

On backtracking the constraints pushed on the stack since the last choice point

are popped off, as are the new constraint variables, and any contractions of interval

variables are also replaced with their original values using a binding trail stack.

The decomposition of constraints into primitive constraints is a simple process of

introducing temporary variables for each subexpression, e.g.

X2 + Y 2 = 25

would be mapped to the following conjuction of primitive constraints

X2 = T1, Y
2 = T2, T1 + T2 = T3, T3 = 25

where the constant 25 has been compiled into a constraint variable with a constant

value.

The constraint solving algorithm simply processes the constraint in the queue by

• taking off the first primitive constraint C(X1, X2, X3) in the queue,

• applying a contraction algorithm for that constraint on its arguments X1, X2, X3,
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• if any of the variables Xi are contracted by a sufficiently large amount, then all

constraints that depend on them (except for C itself), are added to the queue

• the constraint solving continues until either a maximum number of contractions

has been performed (max narrow — a tuning parameter), or a constraint has

been found to be unsatisfiable.

A.8.2 Primitive Contraction

The contraction algorithms for the primitive constraints have been implemented very

carefully making full use of the directed rounding capabilities of the underlying proces-

sors so as to contract their intervals without removing any solutions. Some of these

contraction algorithms have published correctness proofs, others have been proved

correct only by the authors, but have not been peer reviewed. Also, the programs

implementing the algorithms have not been formally proved correct.

As a simple example of contraction, consider the contraction operator for the

addition constraint X+Y = Z, then a correct contraction algorithm for this constraint

is

X ← X ∩ (Y + Z)

Y ← Y ∩ (Z − X)

Z ← Z ∩ (Z − Y )

where
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Y+Z := [addLO(ylo,zlo),addHI(yhi,zhi)]

Z-X := [subLO(zlo,xhi),subHI(zhi,xlo)]

Z-Y := [subLO(zlo,yhi),subHI(zhi,ylo)]

where addLO, addHI, subLO, subHI are operations that add or subtract two floating

point numbers and the round to the nearest floating point below (for LO) or above

(for HI) the actual sum or difference.

A similar approach is used for multiplication, division, and the exponential and

trigonometric constraints (although these require that the math libraries for comput-

ing exp, sin, etc be rewritten to return intervals that are certain to contain the actual

value).

The integer(X) constraint is even easier to implement:

X := [ceiling(xlo),floor(xhi)]

Note that for soundness all we need to verify is that the contractors do not remove

any solutions from the constraint. They do not have to remove all non-solutions!

The library of contractors which clip uses is the C library smathlib which is an

opensource project available from interval.sourceforge.net smathlib has been

tested under Linux on x86 and Mac OS X on Power PC.

A.8.3 CLP(F) constraint solving

The CLP(F) constraint solver is implemented in CLP(I). The key idea is to soundly

approximate infinitely differentiable functions defined on an interval I = [A,B] by

providing intervals for the values of the first n derivatives at the end points, as well

as intervals containing the range of their derivatives over the entire interval I.
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More precisely, we approximate a functions by a set of 3n + 5 intervals where n is

a tuning parameter (default value of 10). The idea is to use an abstraction operator

γn(f) that maps a function f on I = [a, b] to the following tuple

a, b,

f(a), f ′(a), f ′′(a), . . . , f (n)(a)

f(I), f ′(I), f ′′(I), . . . , f (n)(I)

f(b), f ′(b), f ′′(b), . . . , f (n)(b)

in R2 × R2n+2 × Sn+1 where S is the set of real intervals and f (n)(I) denotes the

range of the nth derivative of f on the interval I. We can then approximate a set U

of functions by a tuple Z of 3n + 5 intervals such that γn(f) ∈ Z for each f ∈ U . We

can then compute approximations of functional expressions by computing operations

on their γn approximations. If F is a tuple of intervals such that γn(f) ∈ F we say,

by abuse of language, that f ∈ F . Thus, if f ∈ F and g ∈ G, then f + g ∈ F + G

where F + G is obtained by adding the corresponding intervals in F and G.

Thus, the decls predicate

decls([F],function(A,B))

is implemented by binding F to a tuple of interval variables:

F =

[[A, (F00, F01, F02, ..., F0n)],

[I, (R0, R1, R2, ..., Rn)],

[B, (F10, F11, F12, ..., F1n)]]
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where I is the interval [A,B]. Since it is assumed that F is infinitely differentiable,

we also add Taylor constraints which relate the values of F and its derivatives at A

to the Taylor coefficients at B. The remainder terms are computed from the intervals

bounding the ranges of the derivatives on [A,B]. For example, we add the following

constraints:

T = B − A,

F10 = F00 + T ∗ Z1, Z1inR1,

Z1 = F01 + T/2 ∗ Z2, Z2inR2,

Z2 = F02 + T/3 ∗ Z3, Z3inR3,

...

I = [A,B],

R0inF00 + I ∗ R1,

R1inF01 + I/2 ∗ R2,

R2inF02 + I/3 ∗ R3,

...

and we also add constraints expressing the F0j in terms of the F1j, and vice versa.

These constraints allow information about the function at one end point to be pro-

pogated to the remainder terms and to the other endpoint. The R0 term can be
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bounded using the syntax:

F in [L,H]

which adds the constraints L ≤ R and R ≤ H. The value of the function at any

point X in [A,B] can be expressed using the eval function:

eval(F,X) = Y

which adds the Taylor constraints for expressing Y in terms of (X-A), the derivatives

at X, and the remainder terms (Rj), as well as (X-B), the derivatives at Y, and the

remainder terms (Rj).

The constraint ddt(F, 1) = F is converted into two primitive constraints ddt(F, 1) =

G and G = F . The primitive constraint ddt(F, 1) = G is converted into the obvious

set of corresponding constraints

F10 = G00,

F20 = G10, ...

R1 = S0,

R2 = S1, ...

F11 = G01,

F21 = G11, ...

Other function operators are treated similarly, for example F ∗ G = H generates

constraints on the Fij, Gij and Hij as well as their remainder terms expressing the
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corresponding relations among the derivative functions:

H00 = F00 ∗ G00

H01 = F00 ∗ G01 + F01 ∗ G00

H02 = F00 ∗ G02 + F01 ∗ G01 + F02 ∗ G00

... ...

The exponential and trigonometric functions are handled by reducing them to other

functional equations, e.g.

F = exp(G) ⇒ F ′ = G′ ∗ F ∧ F (A) = eA ∧ F (B) = eB ∧ F ([A,B]) = e[A,B]

and so the constraint F = exp(G) is converted to

ddt(F,1)=G*F

eval(F,A)=exp(A)

eval(F,B)=exp(B)

F in exp([A,B])

The equality constraint among functions is soundly approximated by setting the

corresponding intervals in their γn approximation equal and the inequality constraint

F < G is converted to inequalities

eval(F,A) < eval(G,A)

eval(F,B) < eval(G,B)

eval(F,Z) < eval(G,Z), Z in [A,B]
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Note that the constraint solver only needs to be sound not complete (i.e. contractions

need only keep all solutions, they don’t have to remove all non-solutions). Thus, we

are free to transform any constraint C(X) into a weaker constraint D(X) as long as

C(X) ⇒ D(X), because if D(a) if proved to be false (and hence a is eliminated),

then we will know that C(a) is likewise false and can be eliminated.

A.9 Known Bugs and Issues

A.9.1 Unification and Constraint Solving

Probably the most aggravating of the problems with the CLIP implementation is

that it currently does not support a tight integration with GNU Prolog’s unification.

Thus, two interval variables can only be unified by an explicit constraint {X=Y}. In

particular, the following query will succeed:

?- {X=X, Y=Y, X=Y}.

X=Y

?-

But if we move the last equality out of the constraints, it fails:

?- {X=X, Y=Y}, X=Y.

no

?-
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More subtle is that head unification is converted into an implicit equation which will

fail. Thus if p is a procedure defined by:

p(X,X).

then the following query will also fail.

?- {X=X, Y=Y}, p(X,Y).

no

?-

This bug can be fixed by using some recent extensions to GNU Prolog that allow

one to add unification hooks, but for now it requires a careful (manual) separation

of interval variables from tree variables which guarantees no interval variables are

implicitly unified in the head of any rule.

A.9.2 Other bugs and issues

• help clip fails to write out the constraint operators. This may be a result of

porting from Sicstus Prolog and using ∧, but GNU Prolog does define ∧ in what

seems to be the correct way.

• absolve fails when the interval it’s working on is very small. It appears that

when the interval it’s checking is very small (perhaps 1 ULP??) it goes into an

infinite loop.

• It would be nice if > worked on functions. For now, we use F in [0, ] for

F ≥ 0.
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• Related to the previous item, one cannot have a function f equal a constant c.

A workaround is to say f = c + 0 * f

• psqrt is non-analytic at 0. Currently we simply define psqrt only for values

greater than some small ε, but that’s not rigorous.

• When reading non-integer numbers, even if the number (say 0.5) has an fp

representation, the interval read in is at least 2 ULPs wide, 1 on each side of

the correct value.

• Not really a bug, but when you increase Prolog’s stack size, Clip does not take

advantage of the extra memory. Perhaps we should re-compile clip with larger

arrays to take advantage of the larger memories that have become standard. As

of Jan. 2004, clip’s total static memory usage is about 20 MB. - we could easily

up all the static declarations by a factor of 5 or 10. April 2004 - I increased

all of the array sizes by a factor of 10, so we’re using 200MB plus what Prolog

uses. Should we increase them further?

• If you don’t specify a range for a function, all sorts of intervals grow much larger

than they should. Perhaps a warning would help??

• Prolog warns about singleton variables, but if you get too enthusiastic about

putting underscores in front of variables, there is no warning that you have two

variables with the same name X and they are treated as separate variables.

• Clip is much more sensitive than it should be to the order in which constraints

are listed. This may be a bug, or it may be a place for improvement.
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• When reading integers which are too large, clip sometimes reads positive integers

as negative. Presumably it is writing an unsigned int, which is then read as a

signed int.

| ?- {T=1000000000}.

T = -73741824 ?
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A.10 Quick Reference

A.10.1 CLIP commands

{ }/1

help clip/0

set cp clip/0

reset clip/0

get bounds clip/3

dump clip/1

set clip/2

get clip/2

narrow all clip/1

ode.pl adds:

{[ ]}/1

set degree/1

decls/2

print ps clip/1

solvers.pl adds:

print clip/1

solve clip/3

solve clip/2
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plotting.pl adds:

plot2 solve/4

fplot/3

contract.pl adds:

contract vars/2
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A.10.2 CLP(I) predicates and functions

Symbol Arrity Pos Description

S = T 2 In equals

S < T 2 In less than

S =< T 2 In less than or equal

S >= T 2 In greater than or equal

S\==T 2 In not equals

integer(T ) 1 Integer

boolean(T ) 1 Boolean

S in T 2 In Containment
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Symbol Arrity Pos Description

S + T 2 In addition

S ∗ T 2 In multiplication

S − T 1 unary minus

exp(T ) 1 eT

sq(T ) 1 square

abs(T ) 1 absolute value

sgn(T ) 1 sign of argument, -1, 0, or 1

max(S, T ) 2 Maximum

min(S, T ) 2 Minimum

floor(T ) 1 Floor

ceil(T ) 1 Ceiling

S or T 2 In Logical OR (and S,T are boolean, i.e. in {0,1}

S and T 2 In Logical AND (and S,T are boolean)

S xor T 2 In Logical eXclusive OR (and S,T are boolean)

S not T 1 Logical Negation (and T is in {0,1}

sin(T ) 1 Sine

cos(T ) 1 Cosine

tan(T ) 1 Tangent

S < T 2 Less than function mapping to {0,1}

S ≤ T 2 Less than or equals function

S = T 2 Equals function

sin2pi(T ) 1 returns sin(2 · π · X)

cos2pi(T ) 1 returns cos(2 · π · X)

tan2pi(T ) 1 returns tan(2 · π · X)

evenpow(S, T ) 2 if S > 0, ST ; if S = 00; if S < 0, (−S)T

oddpow(S, T ) 2 if S > 0, ST ; if S = 0, 0 ; if S < 0, −(−S)T
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A.10.3 CLP(F) predicates and functions

Symbol Arrity Pos Description

F = G 2 In equality of functions

F = T 2 In function F is the constant function T

T = F 2 In function F is the constant function T

S = T 2 In real numbers S and T are equal

identity(F ) 1 F is the identity function

F ≤ G 2 In F (t) ≤ G(t) for all t ∈ [A,B]

F in T 2 In F ([A,B]) ⊆ T

F in G 2 In F ([A,B]) ⊆ G([A,B])
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Symbol Arrity Pos Description

F + G,F + T, T + F 2 In addition

F ∗ G,F ∗ T, T ∗ F 2 In multiplication

F − G,F − T, T − F 1 subtraction

F/G, F/T, T/F 1 division

exp(F ) 1 eF (t)

log(F ) 1 log(F (t))

sin(F ) 1 sin(F (t))

cos(F ) 1 cos(F (t))

tan(F ) 1 tan(F (t))

ddt(F, n) 2 nth derivative of F , n an integer constant

ddt(n, F ) 2 nth derivative of F , n an integer constant

eval(F, T ) 2 F (T )
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Naming scheme: Tanks are numbered from 1 to n. A pipe’s number is the

number of the tank above it. A valve’s number is the number of the pipe it is in. Fi

is the flow out of tank i, in pipe i

Variables

t = Time

Discrete Variables (regime or program state)

r1 r2 r3 r4 = regime of tank i in above, below

m1 m2 m3 m4 = regime of valve motion i in opening, closing, halted

r1 r2 r3 r4 = regime of valve position i in shut, trans, normal

Continuous Variables

d1 d2 d3 d4 = depth of water in tank i in [0, ∞]

p1 p2 p3 p4 = valve position for valve out of tank i in [0, 1]

f1 f2 f3 f4 = flow out of tank i

Parameters

h1 h2 h3 h4 = height of tank i above base

c1 c2 c3 c4 = flow constants for pipe out of tank i

e1 e2 e3 e4 = exponent for valve out of tank i

v = speed at which valves open - could be parameterized later

f00 = initial flow into tank 1

delta = maximum time step for problem
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B.1 TEST examples

This section sets up a version of the problem by specifying values for all the param-

eters, and starting values for all the variables.

ex1(Initial_state,Problem_constants,N,Final_state) :-

set_clip(sensitivity,0.0), set_clip(max_narrow,100000),

Problem_constants =

[delta=0.05, % maximum time step

h1=10,h2=9,h3=8,h4=7, % tank heights

% exponent for decay of flow as f(position)

ke1= -3.1, ke2= -3.1, ke3= -3.1, ke4= -3.1,

% flow constant through pipe - valve fully open

kc1= 0.000185, kc2=0.000185,kc3=0.000185,kc4=0.000185,

vt=1.0, % speed at which valve size changes

f00=0.1, % initial inflow rate

epsilon=0.00001], % a small value

Initial_state =

[t=0,

% ODE regime for tank i

r1=below,r2=below,r3=below,r4=below,
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% valve motion status out of tank i

vm1=opening,vm2=opening,vm3=opening,vm4=opening,

% valve position status out of tank i

vr1=normal,vr2=trans,vr3=trans,vr4=trans,

% water depth in tank i

d1=0.1, d2=0.1, d3=0.1, d4= 0.1,

% valve opening out of tank i

p1=0.5, p2=0.005, p3=0.0, p4=0.0],

evolve(Initial_state, Problem_constants,N,Final_state).

ex2(Initial_state,Problem_constants,N,Final_state) :-

set_clip(sensitivity,0.0), set_clip(max_narrow,100000),

Problem_constants =

[delta=0.051231231232122312321231, % maximum time step

h1=10,h2=9,h3=8,h4=7, % tank heights

% exponent for decay of flow as f(position)

ke1= -3.1, ke2= -3.1, ke3= -3.1, ke4= -3.1,
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% flow constant through pipe - valve fully open

kc1= 0.000185, kc2=0.000185,kc3=0.000185,kc4=0.000185,

vt=1.0, % speed at which valve size changes

f00=0.1, % initial inflow rate

epsilon=0.00001], % a small value

Initial_state =

[t=0,

% ODE regime for tank i

r1=below,r2=below,r3=below,r4=below,

% valve motion status out of tank i

vm1=opening,vm2=opening,vm3=opening,vm4=opening,

% valve position status out of tank i

vr1=normal,vr2=trans,vr3=trans,vr4=trans,

% water depth in tank i

d1=0.1, d2=0.1, d3=0.1, d4= 0.1,

% valve opening out of tank i

p1=0.5, p2=0.005, p3=0.0, p4=0.0],

lookup([t=1.0],Final_state),

evolve(Initial_state, Problem_constants,N,Final_state).
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B.2 Evolving a System

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% evolving a hybrid system

% evolve(Initial_state, Problem_constants, Num_steps, Final_state)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% We use contract_vars_BT here to figure out why the current step

% ends, and then reclaim the stack space used for that. If

% we were trying to analyze the system, and ask what parameters

% had what effect, we would have to use just next_step(S0,C,S1),

% but that doesn’t reuse memory

% evolve(S0,C,N,S2) is true iff the system described by C can evolve

% in N steps from state S0 to state S1.

evolve(S0,C,N,S2) :-

evolve0(S0,C,N,S1),

enforce_ODEs(S1,C,S2),

copy_discrete_state(S1,S2).
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% evolve0(S0,C,N,S1) is true iff the system described by C can

% evolve in N steps from S0 to S1 *and* S1 is a boundary state

% (i.e. a program or regime changes at S1, or a maximum step length

% is achieved at S1)

evolve0(S0,_C,N,S1) :- {N=0},eqstate(S0,S1).

evolve0(S0,C,N,S2) :-

opt_next_step(S0,C,S1),

{N=M+1},

evolve0(S1,C,M,S2).

% test if two continuous states are equal

eqstate([],[]).

eqstate([A=X|As],[A=Y|Bs]) :-

eq(X,Y),eqstate(As,Bs).

eq(T0,T1),eq(A0,A1),eq(Z0,Z1).

eq(A,B) :- (var(A);var(B)),!,A=B.

eq(’$INT’(N),’$INT’(M)) :-

{’$INT’(N) = ’$INT’(M)}.
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% next_step(InitialState, ProblemConstants, FinalState)

next_step(S0,C,S1) :-

enforce_ODEs(S0,C,S1),

find_state_change(S0,C,S1).

% optimized version that save space and time

opt_next_step(S0,C,S1) :-

contract_vars_BT([S1],next_step(S0,C,S1)).

B.3 ODE Code

B.3.1 Looking up Constants and Current Values of Variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ODE code -- note, this uses ODEs on function variables

% to generate constraints on the interval variables in S0 and S1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

enforce_ODEs(S0,C,S1) :-

is_state(S0),is_state(S1),

% lookup maximum time step and time at S0 and S1

lookup([delta=Delta],C), lookup([t=T0],S0), lookup([t=T1],S1),
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% and set upper bound on next step

{T1max=T1, T1 < T0+Delta},

% get discrete state at T0 which will determine the ODEs to use

% ri is ODEregime, vmi is valvemotion regime, vri is valve position

% regime

% tank 4’s output pipe does not go into another tank, so it can’t

% change regime, hence the r4=_R4

lookup([r1=R1,r2=R2,r3=R3,r4=_R4,vm1=VM1,vm2=VM2,vm3=VM3,vm4=VM4,

vr1=VR1,vr2=VR2,vr3=VR3,vr4=VR4],S0),

% lookup relevant constants for ODEs

lookup([epsilon=E,f00=F00],C),

% VALVE Position ODEs

% create valve position functions on [T0,T1max]

P=[P1,P2,P3,P4],

decls(P,function(T0,T1max)),

% put bounds on the range of the function

bound_functions(P,[0,1]),

% set their values at times T0 and T1

Ps0=[P10,P20,P30,P40],

Ps1=[P11,P21,P31,P41],
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lookup([p1=P10,p2=P20,p3=P30,p4=P40],S0),

lookup([p1=P11,p2=P21,p3=P31,p4=P41],S1),

evalall(P,T0,Ps0), evalall(P,T1,Ps1),

% lookup the valve speed

lookup([vt=VT],C),

% add the ODE constraints

valve_ODE(P1,VT,VM1),

valve_ODE(P2,VT,VM2),

valve_ODE(P3,VT,VM3),

valve_ODE(P4,VT,VM4),

% DEPTH and FLOW ODEs

% create depth and flow function variables on [T0,T1max] for the ODEs

D=[D1,D2,D3,D4],

F=[F1,F2,F3,F4],

FR=[FRAC1,FRAC2,FRAC3,FRAC4],

% and constrain them to be analytic functions on [T0,T1max]

decls(D,function(T0,T1max)),

decls(F,function(T0,T1max)),

decls(FR,function(T0,T1max)),

% put bounds on their ranges

bound_functions(D,[0,1000]),
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bound_functions(F,[0,1000]), % Note: assumes no backward flow

bound_functions(FR,[0,1]),

% bind values of depth functions at T0 and T1

Ds0=[D10,D20,D30,D40],

Ds1=[D11,D21,D31,D41],

lookup([d1=D10,d2=D20,d3=D30,d4=D40],S0),

lookup([d1=D11,d2=D21,d3=D31,d4=D41],S1),

evalall(D,T0,Ds0), evalall(D,T1,Ds1),

% lookup static values for tanks

lookup([h1=H1,h2=H2,h3=H3,h4=H4,

kc1=KC1,kc2=KC2,kc3=KC3,kc4=KC4,ke1=KE1,ke2=KE2,

ke3=KE3,ke4=KE4],C),

% calculate flow through valves,

% VR - valve regime, FRAC- fraction of full flow through valve, P -

%valve position, KE - exponent for valve

valve_coef(VR1,FRAC1,P1,KE1),

valve_coef(VR2,FRAC2,P2,KE2),

valve_coef(VR3,FRAC3,P3,KE3),

valve_coef(VR4,FRAC4,P4,KE4),

% apply the ODEs corresponding to each tank

% Ri = ode governing tank i, Di = depth in tank i,

% Fi = flow out of tank i, Hi = height of tank i,

% Pi = valve opening out of tank i, Ki = valve coefficient,
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% F00 = flow into tank 1

first_tank( R1, D1,F1,D2, F00,H1,KC1,FRAC1,H2,E),

middle_tank(R2, F1,D2,F2,D3, H2,KC2,FRAC2,H3,E),

middle_tank(R3, F2,D3,F3,D4, H3,KC3,FRAC3,H4,E),

last_tank( F3,D4,F4, KC4,FRAC4).

B.3.2 Valve Flow

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here we describe flow through the valves

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% The next 3 lines define the fraction of full flow allowed

% through a valve (FRAC), as a

% function of the regime the valve is in (normal - mainly open,

% transition - nearly but not quite closed; shut);

% the position of the valve % (P) - 0 is closed, 1 is open;

% and the exponent (KE) of the valve description.

% (note: KE is negative)

valve_coef(normal,FRAC,P,KE) :- {[FRAC=exp(KE*((1-P))**3),
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FRAC in [0,1],

P in [0.01,1] ]}.

valve_coef(trans,FRAC,P,_) :- {[ FRAC in [0,0.05], P in [0,0.01] ]}.

valve_coef(shut,FRAC,0,_) :- {[FRAC=0.0*FRAC ]}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here we describe the valve motions by giving its ODEs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

valve_ODE(P,_VT,halted) :- {[ ddt(P,1) = 0.0*P, P in [0,1] ]}.

valve_ODE(P,VT,opening) :- {[ ddt(P,1) = VT+0*P, P in [0,1] ]}.

valve_ODE(P,VT,closing) :- {[ ddt(P,1) = NVT + 0*P, P in [0,1],

NVT= - VT ]}.

B.3.3 Tank Descriptions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here we describe each of the tanks, by giving its ODEs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% D1,D2 water depths, F1 flow from D1->D2, F00 input flow,

% H1, H2 heights, KC flow constant for pipe,

% FRAC - fraction of full flow valve allows

% P - valve position, E-epsilon for error function

%

% The ODEs change when the water in the lower tank goes from above

% the height of the pipe to below the height of the pipe. Because the

% ODEs change there, this point is not analytic. We handle this by

% considering 3 regimes, above, near, below where the water height is

% respectively above, near, or below the in-flow pipe. Since the

% behaviour here is well understood, Epsilon can be quite small.

% Since square root is non-analytic near zero, we can’t use the

% standard % version of the formula for water flow at the point

% where the heights are almost equal.

% For now, we ignore the case when the lower tank has water height

% nearly equal to the upper tank’s, but we’d have to use this

% technique there.

first_tank(above,D1,F1,D2,F00,H1,KC1,FRAC1,H2,_E) :-

{[F1=KC1*FRAC1*psqrt(D1-D2+H), ddt(D1,1)=F00-F1, H=H1-H2,

D2 in [H,1000] ]}.

% Here EF is an error function whose range is [0,2*E]
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% and thats all we know

first_tank(near,D1,F1,D2,F00,H1,KC1,FRAC1,H2,E) :-

decls([EF],function(_,_)),

{[F1=KC1*FRAC1*psqrt(D1-EF), ddt(D1,1)=F00-F1, H=H1-H2,

D2 in [-2*E+H,2*E+H], EF in [0,2*E] ]}.

first_tank(below,D1,F1,D2,F00,H1,KC1,FRAC1,H2,E) :-

{[F1=KC1*FRAC1*psqrt(D1), ddt(D1,1)=F00-F1, H=H1-H2, D2 in [E,H]]}.

middle_tank(above,F1,D2,F2,D3,H2,KC2,FRAC2,H3,_E) :-

{[F2=KC2*FRAC2*psqrt(D2-D3+H), ddt(D2,1)=F1-F2, H=H2-H3,

D3 in [H,1000] ]}.

middle_tank(near,F1,D2,F2,D3,H2,KC2,FRAC2,H3,E) :-

decls([EF],function(_,_)),

{[F2=KC2*FRAC2*psqrt(D2-EF), ddt(D2,1)=F1-F2,

H=H2-H3, D3 in [-2*E+H,2*E+H], EF in [0,2*E] ]}.

middle_tank(below,F1,D2,F2,D3,H2,KC2,FRAC2,H3,E) :-

{[F2=KC2*FRAC2*psqrt(D2), ddt(D2,1)=F1-F2, H=H2-H3, D3 in [E,H]]}.

last_tank(F3,D4,F4,KC4,FRAC4) :-

{[F4=KC4*FRAC4*psqrt(D4), ddt(D4,1)=F3-F4 ]}.
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B.4 Specifying Transitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Specification of Transitions

%

% find_state_change(S0,C,S1)

%

% Find state change -- here we look for regime/state change

% constraints being satisfied

%

% Key idea -- for this to work well, we need to ensure that a

% change is detected at time t

% only if no earlier change has occurred at some time before

% t.... We don’t need this for soundness, but we do need it to

% rule out spurious paths.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% one of the tanks changes regime

find_state_change(S0,C,S1) :-

find_flow_state_change(r1,h1,h2,d2,C,S0,S1).

find_state_change(S0,C,S1) :-

find_flow_state_change(r2,h2,h3,d3,C,S0,S1).
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find_state_change(S0,C,S1) :-

find_flow_state_change(r3,h3,h4,d4,C,S0,S1).

% one of the valves finishes opening or closing, or changes regime

% among shut, transition, normal

find_state_change(S0,C,S1) :-

find_valve_state_change(p1,vr1,vm1,C,S0,S1).

find_state_change(S0,C,S1) :-

find_valve_state_change(p2,vr2,vm2,C,S0,S1).

find_state_change(S0,C,S1) :-

find_valve_state_change(p3,vr3,vm3,C,S0,S1).

find_state_change(S0,C,S1) :-

find_valve_state_change(p4,vr4,vm4,C,S0,S1).

% PROGRAMMED STATE CHANGES

find_state_change(S0,C,S1) :-

find_program_state_change(v1,d2,C,S0,S1).

find_state_change(S0,C,S1) :-

find_program_state_change(v2,d3,C,S0,S1).

find_state_change(S0,C,S1) :-

find_program_state_change(v3,d4,C,S0,S1).

% no regime or state changes before the time limit is reached
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find_state_change(S0,C,S1) :- find_step_size_change(S0,C,S1).

% succeeds if the maximum step size has been reached...

% no regime or state changes before the time limit is reached

% no change in discreet state - update discrete state called

% with no change in r1 so no discrete changes at all

find_step_size_change(S0,C,S1) :-

lookup([t=T0],S0),lookup([t=T1],S1),lookup([delta=Delta],C),

update_discrete_state(vr1,VR10,VR10,S0,S1),

{T1= T0+Delta}. % Only continuous state changes

B.5 User Program

% if the user’s program starts a valve moving, this handles

% any valve position regime change if needed

% Valve#, WaterDepth, constants, old state, new state

find_program_state_change(Vi,Dj,_C,S0,S1) :-

lookup([Dj=D],S1),
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update_discrete_state(Vi,_VM_before,VM_after,S0,S2),

update_discrete_state(Vi,VR_before,VR_after,S2,S1),

((VR_before = shut, VM_after = opening, VR_after = trans);

( VR_before \= shut, VR_before = VR_after)),

regulate_valve1(D,VM_after).

% Program for regulating depth in tank j using valve i (with j=i+1)

% if depth in tank j > 1.1 and then close valve i

% if depth in tank j < 0.9 and then open valve i

% e.g. find_program_state_change(v2,d3,C,S0,S1).

% Here D is the analog value of the the depth of water in the tank

% This allows a phantom state change from closing->closing

% and from opening->opening

% This is the user’s program, it can do anything it wants...

% We have to try to prove it safe or show it is unsafe, or claim

% ignorance -- authoritatively.

regulate_valve1(D,VM_after) :- VM_after=closing, {D = 1.1}.

regulate_valve1(D,VM_after) :- VM_after=opening, {D = 0.9}.

B.6 Finding Regime Changes
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% Detection of regime change due to tank depth exceeding input

% pipe height % e.g. find_flow_state_change(r2,h2,h3,d3,C,S0,S1).

% note j=i+1 here and Ri in {above,near,below}

find_flow_state_change(Ri,Hi,Hj,Dj,C,S0,S1) :-

lookup([Hi=H1,Hj=H2],C), lookup([Dj=D],S1),

update_discrete_state(Ri,R_before,R_after,S0,S1),

flow_state_change(R_before,D,R_after,H1,H2).

% We use hysteresis in our analysis to avoid an infinite loop of zero

% time state changes as it goes from near to below and back again.

% We’ll probably need to do this in several cases of regime change

flow_state_change(below,D,near,H1,H2) :-

E=0.00001, {D = H1-H2-E}.

flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2-2*E}.

flow_state_change(above,D,near,H1,H2) :-

E=0.00001, {D = H1-H2-E}.

flow_state_change(near,D,below,H1,H2) :-

E=0.00001, {D = H1-H2+2*E}.

% check to see if valve n has hit a state change

% and if so, update the discrete part of S1 accordingly
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% e.g. find_valve_state_change(p2,v2,C,S0,S1).

% v2 in {opening,closing,halted}, p2 in [0,1],

% note that this is a regime change, not a state change.

% Also, we have to handle the regime change from shut to transition

% to normal The transisition to shut implies a transition to halted,

% but not vice versa.

% We use S2 as a temporary state to allow changes to 2

% discrete variables in one change

find_valve_state_change(Pn,VRn,VMn,_C,S0,S1) :-

lookup([Pn=P_before],S0),lookup([Pn=P_after],S1),

update_discrete_state(VMn,VM_before,VM_after,S0,S2),

update_discrete_state(VRn,VR_before,VR_after,S2,S1),

valve_state_change(VM_before,VR_before,P_before,VM_after,

VR_after,P_after).

% regime change rules for valve motion (and in closing case, position)

valve_state_change(opening,normal,_P_before,halted,normal,P_after) :-

{P_after=1}.

valve_state_change(closing,trans,_P_before,halted,shut,P_after) :-

{P_after=0}.
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% regime change rules for valves position

valve_state_change(opening,trans,_P_before, opening,normal,P_after)

:- {P_after=0.01}.

valve_state_change(opening,normal,_P_before, constant,normal,P_after)

:- {P_after=1.0}.

valve_state_change(opening, shut,_P_before, opening,trans,P_after)

:- {P_after=0.0}.

valve_state_change(closing, normal,_P_before, closing,trans,P_after)

:- {P_after=0.01}.

valve_state_change(closing,trans,_P_before, constant,shut,P_after)

:- {P_after=0.0}.

B.7 Helper Functions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% helper functions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lookup([],_).

lookup([A|As],R) :- lookup_one(A,R),lookup(As,R).

lookup_one(A=V,[A=W|_]) :- eq(V,W).

lookup_one(A=V,[B=_|R]) :- A\==B, lookup_one(A=V,R).
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copy_discrete_state(S0,S1) :-

update_discrete_state(vr1,V,V,S1,S2).

% for statename V, unify all discrete states in S1 to corresponding

% ones in S0

% except for the V state. Its value in S0 is V0 and in S1 is V1.

update_discrete_state(V,V0,V1,S0,S1) :-

is_state(S0),is_state(S1),

update_ds(S0,S1,V,V0,V1), % get the value of Vn in S0 and in S1

Dvals=[r1,r2,r3,r4, vm1,vm2,vm3,vm4, vr1,vr2,vr3,vr4],

remove(V,Dvals,CopyVals),

copy_ds(S0,S1,CopyVals).

% make sure S0,S1 have same values for other discrete variables

% makes sure that V has value V0 in S0 and V1 is S1,

% no other constraints.

update_ds([V=V0|_Cs],[V=V1|_Ds],V,V0,V1).

update_ds([A=_|Cs],[A=_|Ds],V,V0,V1) :- A\==V,!,

update_ds(Cs,Ds,V,V0,V1).

copy_ds([],[],_).

copy_ds([V=V0|Cs],[V=V0|Ds],CopyVals) :- member(V,CopyVals),!,
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copy_ds(Cs,Ds,CopyVals).

copy_ds([_|Cs],[_|Ds],CopyVals) :-

copy_ds(Cs,Ds,CopyVals).

remove(_,[],[]).

remove(X,[X|Ys],Ys).

remove(X,[A|As],[A|Bs]) :- X\==A,remove(X,As,Bs).

print_the_list([]).

print_the_list([A|As]) :- print(A),nl,print_the_list(As).

evalall([],_,[]).

evalall([F|Fs],T,[C|Cs]) :- {[eval(F,T)=C]}, evalall(Fs,T,Cs).

bound_functions([],_).

bound_functions([F|Fs],I) :- {[ F in I ]}, bound_functions(Fs,I).

% is_state could be expanded to check if state is legal -

% are values and regimes compatible?

is_state( [t=_,

r1=_,r2=_,r3=_,r4=_, % ODE regime for tank i

vm1=_,vm2=_,vm3=_,vm4=_, % valve motion status out of tank i
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vr1=_,vr2=_,vr3=_,vr4=_, % valve i position status

d1=_, d2=_, d3=_, d4= _, % water depth in tank i

p1=_, p2=_, p3=_, p4=_]). % valve opening out of tank i
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